L(s) = 1 | + (−0.608 + 0.793i)5-s + (0.866 − 0.5i)9-s + (−1.30 − 1.30i)13-s + (−0.198 − 0.739i)17-s + (−0.258 − 0.965i)25-s − 1.41i·29-s + (−0.517 + 1.93i)37-s − 1.84i·41-s + (−0.130 + 0.991i)45-s + (−0.366 − 1.36i)53-s + (0.662 − 0.382i)61-s + (1.83 − 0.241i)65-s + (0.739 − 0.198i)73-s + (0.499 − 0.866i)81-s + (0.707 + 0.292i)85-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)5-s + (0.866 − 0.5i)9-s + (−1.30 − 1.30i)13-s + (−0.198 − 0.739i)17-s + (−0.258 − 0.965i)25-s − 1.41i·29-s + (−0.517 + 1.93i)37-s − 1.84i·41-s + (−0.130 + 0.991i)45-s + (−0.366 − 1.36i)53-s + (0.662 − 0.382i)61-s + (1.83 − 0.241i)65-s + (0.739 − 0.198i)73-s + (0.499 − 0.866i)81-s + (0.707 + 0.292i)85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.284 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.284 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8943059135\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8943059135\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.608 - 0.793i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1.30 + 1.30i)T + iT^{2} \) |
| 17 | \( 1 + (0.198 + 0.739i)T + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.517 - 1.93i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + 1.84iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.662 + 0.382i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.739 + 0.198i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.382 - 0.662i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1.30 - 1.30i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.233967775076246375225354281640, −7.74693397520141636689738655914, −7.00894108174566357479730724909, −6.56416632512933884838246848902, −5.43768150073276131337388792568, −4.69689093522186642050992803082, −3.80616023736907772205232464956, −3.02837965193462059062018397428, −2.19674684513873403396136706128, −0.51374411589060138566693037368,
1.39682455406892899880959016098, 2.22473271480746796021135779839, 3.56617801428978443922683506468, 4.46405601707140602367830253376, 4.74938273512365047621257575672, 5.72146129057019962580539456823, 6.85996596192851180200347819017, 7.31292841051026243875434092878, 8.004022700590438463929411999559, 8.868038708709022086321428561936