L(s) = 1 | + (−0.608 + 0.793i)5-s + (0.866 − 0.5i)9-s + (−1.30 − 1.30i)13-s + (−0.198 − 0.739i)17-s + (−0.258 − 0.965i)25-s − 1.41i·29-s + (−0.517 + 1.93i)37-s − 1.84i·41-s + (−0.130 + 0.991i)45-s + (−0.366 − 1.36i)53-s + (0.662 − 0.382i)61-s + (1.83 − 0.241i)65-s + (0.739 − 0.198i)73-s + (0.499 − 0.866i)81-s + (0.707 + 0.292i)85-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)5-s + (0.866 − 0.5i)9-s + (−1.30 − 1.30i)13-s + (−0.198 − 0.739i)17-s + (−0.258 − 0.965i)25-s − 1.41i·29-s + (−0.517 + 1.93i)37-s − 1.84i·41-s + (−0.130 + 0.991i)45-s + (−0.366 − 1.36i)53-s + (0.662 − 0.382i)61-s + (1.83 − 0.241i)65-s + (0.739 − 0.198i)73-s + (0.499 − 0.866i)81-s + (0.707 + 0.292i)85-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.284+0.958i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.284+0.958i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
0.284+0.958i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(3167,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), 0.284+0.958i)
|
Particular Values
L(21) |
≈ |
0.8943059135 |
L(21) |
≈ |
0.8943059135 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.608−0.793i)T |
| 7 | 1 |
good | 3 | 1+(−0.866+0.5i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(1.30+1.30i)T+iT2 |
| 17 | 1+(0.198+0.739i)T+(−0.866+0.5i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.866−0.5i)T2 |
| 29 | 1+1.41iT−T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(0.517−1.93i)T+(−0.866−0.5i)T2 |
| 41 | 1+1.84iT−T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.866−0.5i)T2 |
| 53 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.662+0.382i)T+(0.5−0.866i)T2 |
| 67 | 1+(−0.866+0.5i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.739+0.198i)T+(0.866−0.5i)T2 |
| 79 | 1+(−0.5+0.866i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(−0.382−0.662i)T+(−0.5+0.866i)T2 |
| 97 | 1+(1.30−1.30i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.233967775076246375225354281640, −7.74693397520141636689738655914, −7.00894108174566357479730724909, −6.56416632512933884838246848902, −5.43768150073276131337388792568, −4.69689093522186642050992803082, −3.80616023736907772205232464956, −3.02837965193462059062018397428, −2.19674684513873403396136706128, −0.51374411589060138566693037368,
1.39682455406892899880959016098, 2.22473271480746796021135779839, 3.56617801428978443922683506468, 4.46405601707140602367830253376, 4.74938273512365047621257575672, 5.72146129057019962580539456823, 6.85996596192851180200347819017, 7.31292841051026243875434092878, 8.004022700590438463929411999559, 8.868038708709022086321428561936