Properties

Label 2-396-1.1-c3-0-1
Degree 22
Conductor 396396
Sign 11
Analytic cond. 23.364723.3647
Root an. cond. 4.833714.83371
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.1·5-s − 23.1·7-s + 11·11-s − 59.6·13-s + 80.8·17-s − 11.7·19-s + 56.0·23-s + 168.·25-s + 85.4·29-s − 99.8·31-s + 396.·35-s + 402.·37-s − 27.0·41-s − 74·43-s + 408.·47-s + 192.·49-s − 463.·53-s − 188.·55-s + 498.·59-s − 635.·61-s + 1.02e3·65-s − 701.·67-s − 27.7·71-s + 619.·73-s − 254.·77-s − 208.·79-s + 1.30e3·83-s + ⋯
L(s)  = 1  − 1.53·5-s − 1.24·7-s + 0.301·11-s − 1.27·13-s + 1.15·17-s − 0.141·19-s + 0.508·23-s + 1.34·25-s + 0.547·29-s − 0.578·31-s + 1.91·35-s + 1.79·37-s − 0.103·41-s − 0.262·43-s + 1.26·47-s + 0.560·49-s − 1.20·53-s − 0.462·55-s + 1.10·59-s − 1.33·61-s + 1.95·65-s − 1.27·67-s − 0.0463·71-s + 0.993·73-s − 0.376·77-s − 0.296·79-s + 1.72·83-s + ⋯

Functional equation

Λ(s)=(396s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(396s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 396396    =    2232112^{2} \cdot 3^{2} \cdot 11
Sign: 11
Analytic conductor: 23.364723.3647
Root analytic conductor: 4.833714.83371
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 396, ( :3/2), 1)(2,\ 396,\ (\ :3/2),\ 1)

Particular Values

L(2)L(2) \approx 0.84199817210.8419981721
L(12)L(\frac12) \approx 0.84199817210.8419981721
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
11 111T 1 - 11T
good5 1+17.1T+125T2 1 + 17.1T + 125T^{2}
7 1+23.1T+343T2 1 + 23.1T + 343T^{2}
13 1+59.6T+2.19e3T2 1 + 59.6T + 2.19e3T^{2}
17 180.8T+4.91e3T2 1 - 80.8T + 4.91e3T^{2}
19 1+11.7T+6.85e3T2 1 + 11.7T + 6.85e3T^{2}
23 156.0T+1.21e4T2 1 - 56.0T + 1.21e4T^{2}
29 185.4T+2.43e4T2 1 - 85.4T + 2.43e4T^{2}
31 1+99.8T+2.97e4T2 1 + 99.8T + 2.97e4T^{2}
37 1402.T+5.06e4T2 1 - 402.T + 5.06e4T^{2}
41 1+27.0T+6.89e4T2 1 + 27.0T + 6.89e4T^{2}
43 1+74T+7.95e4T2 1 + 74T + 7.95e4T^{2}
47 1408.T+1.03e5T2 1 - 408.T + 1.03e5T^{2}
53 1+463.T+1.48e5T2 1 + 463.T + 1.48e5T^{2}
59 1498.T+2.05e5T2 1 - 498.T + 2.05e5T^{2}
61 1+635.T+2.26e5T2 1 + 635.T + 2.26e5T^{2}
67 1+701.T+3.00e5T2 1 + 701.T + 3.00e5T^{2}
71 1+27.7T+3.57e5T2 1 + 27.7T + 3.57e5T^{2}
73 1619.T+3.89e5T2 1 - 619.T + 3.89e5T^{2}
79 1+208.T+4.93e5T2 1 + 208.T + 4.93e5T^{2}
83 11.30e3T+5.71e5T2 1 - 1.30e3T + 5.71e5T^{2}
89 11.39e3T+7.04e5T2 1 - 1.39e3T + 7.04e5T^{2}
97 11.05e3T+9.12e5T2 1 - 1.05e3T + 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.91982989565892704612692699859, −9.899116144344225175505908477532, −9.121857091030088711357140205550, −7.85873772502926779614755362598, −7.29685703980196828688710092448, −6.23939274757616566235218479141, −4.82780199691401233358285965346, −3.73955158079746682598293345989, −2.86788086209098803791946835368, −0.57891263327620278241286908249, 0.57891263327620278241286908249, 2.86788086209098803791946835368, 3.73955158079746682598293345989, 4.82780199691401233358285965346, 6.23939274757616566235218479141, 7.29685703980196828688710092448, 7.85873772502926779614755362598, 9.121857091030088711357140205550, 9.899116144344225175505908477532, 10.91982989565892704612692699859

Graph of the ZZ-function along the critical line