Properties

Label 2-396-1.1-c3-0-1
Degree $2$
Conductor $396$
Sign $1$
Analytic cond. $23.3647$
Root an. cond. $4.83371$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.1·5-s − 23.1·7-s + 11·11-s − 59.6·13-s + 80.8·17-s − 11.7·19-s + 56.0·23-s + 168.·25-s + 85.4·29-s − 99.8·31-s + 396.·35-s + 402.·37-s − 27.0·41-s − 74·43-s + 408.·47-s + 192.·49-s − 463.·53-s − 188.·55-s + 498.·59-s − 635.·61-s + 1.02e3·65-s − 701.·67-s − 27.7·71-s + 619.·73-s − 254.·77-s − 208.·79-s + 1.30e3·83-s + ⋯
L(s)  = 1  − 1.53·5-s − 1.24·7-s + 0.301·11-s − 1.27·13-s + 1.15·17-s − 0.141·19-s + 0.508·23-s + 1.34·25-s + 0.547·29-s − 0.578·31-s + 1.91·35-s + 1.79·37-s − 0.103·41-s − 0.262·43-s + 1.26·47-s + 0.560·49-s − 1.20·53-s − 0.462·55-s + 1.10·59-s − 1.33·61-s + 1.95·65-s − 1.27·67-s − 0.0463·71-s + 0.993·73-s − 0.376·77-s − 0.296·79-s + 1.72·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(396\)    =    \(2^{2} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(23.3647\)
Root analytic conductor: \(4.83371\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 396,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8419981721\)
\(L(\frac12)\) \(\approx\) \(0.8419981721\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - 11T \)
good5 \( 1 + 17.1T + 125T^{2} \)
7 \( 1 + 23.1T + 343T^{2} \)
13 \( 1 + 59.6T + 2.19e3T^{2} \)
17 \( 1 - 80.8T + 4.91e3T^{2} \)
19 \( 1 + 11.7T + 6.85e3T^{2} \)
23 \( 1 - 56.0T + 1.21e4T^{2} \)
29 \( 1 - 85.4T + 2.43e4T^{2} \)
31 \( 1 + 99.8T + 2.97e4T^{2} \)
37 \( 1 - 402.T + 5.06e4T^{2} \)
41 \( 1 + 27.0T + 6.89e4T^{2} \)
43 \( 1 + 74T + 7.95e4T^{2} \)
47 \( 1 - 408.T + 1.03e5T^{2} \)
53 \( 1 + 463.T + 1.48e5T^{2} \)
59 \( 1 - 498.T + 2.05e5T^{2} \)
61 \( 1 + 635.T + 2.26e5T^{2} \)
67 \( 1 + 701.T + 3.00e5T^{2} \)
71 \( 1 + 27.7T + 3.57e5T^{2} \)
73 \( 1 - 619.T + 3.89e5T^{2} \)
79 \( 1 + 208.T + 4.93e5T^{2} \)
83 \( 1 - 1.30e3T + 5.71e5T^{2} \)
89 \( 1 - 1.39e3T + 7.04e5T^{2} \)
97 \( 1 - 1.05e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91982989565892704612692699859, −9.899116144344225175505908477532, −9.121857091030088711357140205550, −7.85873772502926779614755362598, −7.29685703980196828688710092448, −6.23939274757616566235218479141, −4.82780199691401233358285965346, −3.73955158079746682598293345989, −2.86788086209098803791946835368, −0.57891263327620278241286908249, 0.57891263327620278241286908249, 2.86788086209098803791946835368, 3.73955158079746682598293345989, 4.82780199691401233358285965346, 6.23939274757616566235218479141, 7.29685703980196828688710092448, 7.85873772502926779614755362598, 9.121857091030088711357140205550, 9.899116144344225175505908477532, 10.91982989565892704612692699859

Graph of the $Z$-function along the critical line