Properties

Label 2-396-1.1-c5-0-6
Degree $2$
Conductor $396$
Sign $1$
Analytic cond. $63.5119$
Root an. cond. $7.96944$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 33.5·5-s + 67.1·7-s + 121·11-s + 504.·13-s − 984.·17-s + 281.·19-s − 359.·23-s − 1.99e3·25-s + 5.02e3·29-s − 7.01e3·31-s − 2.25e3·35-s − 5.24e3·37-s + 1.38e4·41-s + 2.01e4·43-s − 6.78e3·47-s − 1.22e4·49-s + 2.72e4·53-s − 4.05e3·55-s − 1.90e4·59-s + 2.40e4·61-s − 1.69e4·65-s + 5.32e4·67-s + 4.42e4·71-s + 2.19e4·73-s + 8.12e3·77-s − 2.63e4·79-s + 1.94e4·83-s + ⋯
L(s)  = 1  − 0.600·5-s + 0.518·7-s + 0.301·11-s + 0.828·13-s − 0.826·17-s + 0.178·19-s − 0.141·23-s − 0.639·25-s + 1.10·29-s − 1.31·31-s − 0.310·35-s − 0.629·37-s + 1.28·41-s + 1.66·43-s − 0.447·47-s − 0.731·49-s + 1.33·53-s − 0.180·55-s − 0.714·59-s + 0.827·61-s − 0.496·65-s + 1.44·67-s + 1.04·71-s + 0.481·73-s + 0.156·77-s − 0.475·79-s + 0.309·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(396\)    =    \(2^{2} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(63.5119\)
Root analytic conductor: \(7.96944\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 396,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.934588370\)
\(L(\frac12)\) \(\approx\) \(1.934588370\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - 121T \)
good5 \( 1 + 33.5T + 3.12e3T^{2} \)
7 \( 1 - 67.1T + 1.68e4T^{2} \)
13 \( 1 - 504.T + 3.71e5T^{2} \)
17 \( 1 + 984.T + 1.41e6T^{2} \)
19 \( 1 - 281.T + 2.47e6T^{2} \)
23 \( 1 + 359.T + 6.43e6T^{2} \)
29 \( 1 - 5.02e3T + 2.05e7T^{2} \)
31 \( 1 + 7.01e3T + 2.86e7T^{2} \)
37 \( 1 + 5.24e3T + 6.93e7T^{2} \)
41 \( 1 - 1.38e4T + 1.15e8T^{2} \)
43 \( 1 - 2.01e4T + 1.47e8T^{2} \)
47 \( 1 + 6.78e3T + 2.29e8T^{2} \)
53 \( 1 - 2.72e4T + 4.18e8T^{2} \)
59 \( 1 + 1.90e4T + 7.14e8T^{2} \)
61 \( 1 - 2.40e4T + 8.44e8T^{2} \)
67 \( 1 - 5.32e4T + 1.35e9T^{2} \)
71 \( 1 - 4.42e4T + 1.80e9T^{2} \)
73 \( 1 - 2.19e4T + 2.07e9T^{2} \)
79 \( 1 + 2.63e4T + 3.07e9T^{2} \)
83 \( 1 - 1.94e4T + 3.93e9T^{2} \)
89 \( 1 - 3.13e4T + 5.58e9T^{2} \)
97 \( 1 - 1.34e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73237771126989262526609621461, −9.444563667083650407927268892953, −8.575805838877039743851838944940, −7.76969573023446593815273655828, −6.75840766658514869916072316675, −5.67643691692985461560033926788, −4.44864318704261173955482499609, −3.60357999334401235192699182660, −2.09907183802404112960617002281, −0.74625772058557356819582919855, 0.74625772058557356819582919855, 2.09907183802404112960617002281, 3.60357999334401235192699182660, 4.44864318704261173955482499609, 5.67643691692985461560033926788, 6.75840766658514869916072316675, 7.76969573023446593815273655828, 8.575805838877039743851838944940, 9.444563667083650407927268892953, 10.73237771126989262526609621461

Graph of the $Z$-function along the critical line