Properties

Label 2-3960-440.109-c0-0-3
Degree $2$
Conductor $3960$
Sign $1$
Analytic cond. $1.97629$
Root an. cond. $1.40580$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 11-s + 14-s + 16-s + 17-s − 19-s − 20-s + 22-s + 25-s − 28-s + 29-s − 31-s − 32-s − 34-s + 35-s − 37-s + 38-s + 40-s − 44-s − 50-s + 53-s + 55-s + ⋯
L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 11-s + 14-s + 16-s + 17-s − 19-s − 20-s + 22-s + 25-s − 28-s + 29-s − 31-s − 32-s − 34-s + 35-s − 37-s + 38-s + 40-s − 44-s − 50-s + 53-s + 55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(1.97629\)
Root analytic conductor: \(1.40580\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{3960} (109, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4342611629\)
\(L(\frac12)\) \(\approx\) \(0.4342611629\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good7 \( 1 + T + T^{2} \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( 1 - T + T^{2} \)
19 \( 1 + T + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( 1 - T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( 1 + T + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 - T + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( 1 + T + T^{2} \)
67 \( ( 1 - T )^{2} \)
71 \( 1 - T + T^{2} \)
73 \( ( 1 - T )^{2} \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( 1 - T + T^{2} \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.403124144176362977837487646191, −8.130192596445280300039096351036, −7.22731585055239551086429339225, −6.75317205369445041414481855172, −5.86664005744627583874031154545, −4.98051285202963894221363603126, −3.70477362547386110863939095350, −3.14587942267611780900500058358, −2.17926926906185071217829750252, −0.61415038615309546718295561118, 0.61415038615309546718295561118, 2.17926926906185071217829750252, 3.14587942267611780900500058358, 3.70477362547386110863939095350, 4.98051285202963894221363603126, 5.86664005744627583874031154545, 6.75317205369445041414481855172, 7.22731585055239551086429339225, 8.130192596445280300039096351036, 8.403124144176362977837487646191

Graph of the $Z$-function along the critical line