L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + i·5-s + 1.41·7-s + (0.707 − 0.707i)8-s + (0.707 − 0.707i)10-s + i·11-s + 1.41i·13-s + (−1.00 − 1.00i)14-s − 1.00·16-s + 1.41·17-s − 1.00·20-s + (0.707 − 0.707i)22-s − 25-s + (1.00 − 1.00i)26-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + i·5-s + 1.41·7-s + (0.707 − 0.707i)8-s + (0.707 − 0.707i)10-s + i·11-s + 1.41i·13-s + (−1.00 − 1.00i)14-s − 1.00·16-s + 1.41·17-s − 1.00·20-s + (0.707 − 0.707i)22-s − 25-s + (1.00 − 1.00i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.707−0.707i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.707−0.707i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), 0.707−0.707i)
|
Particular Values
L(21) |
≈ |
1.092895494 |
L(21) |
≈ |
1.092895494 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 5 | 1−iT |
| 11 | 1−iT |
good | 7 | 1−1.41T+T2 |
| 13 | 1−1.41iT−T2 |
| 17 | 1−1.41T+T2 |
| 19 | 1+T2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1+1.41iT−T2 |
| 47 | 1−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+T2 |
| 71 | 1+2T+T2 |
| 73 | 1+1.41T+T2 |
| 79 | 1−T2 |
| 83 | 1+1.41iT−T2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.780587617986931920600691956584, −7.988816694162300191061301765304, −7.32160880544288757699742539018, −6.99093144867118979164578867771, −5.79746747482598588582334750793, −4.67703488420814108205298399017, −4.08883051632040673056338765191, −3.10205122068549285682381847156, −2.04642552366789615559020104049, −1.56087167796996927417834091876,
0.878954898968080740854605256906, 1.52864835997380095223083001340, 2.97022727409248490972132171897, 4.25804450884861233973253832055, 5.16052783695257121279945934276, 5.50746978455129918063050764395, 6.17021967577763715367775231448, 7.58032594095621972620311549858, 7.85946271342171567073760242043, 8.409565045463735843561576414732