L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s − i·5-s + 1.41·7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)10-s − i·11-s − 1.41i·13-s + (−1.00 + 1.00i)14-s − 1.00·16-s + 1.41·17-s − 1.00·20-s + (0.707 + 0.707i)22-s − 25-s + (1.00 + 1.00i)26-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s − i·5-s + 1.41·7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)10-s − i·11-s − 1.41i·13-s + (−1.00 + 1.00i)14-s − 1.00·16-s + 1.41·17-s − 1.00·20-s + (0.707 + 0.707i)22-s − 25-s + (1.00 + 1.00i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.092895494\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.092895494\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 11 | \( 1 + iT \) |
good | 7 | \( 1 - 1.41T + T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 1.41iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 2T + T^{2} \) |
| 73 | \( 1 + 1.41T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.409565045463735843561576414732, −7.85946271342171567073760242043, −7.58032594095621972620311549858, −6.17021967577763715367775231448, −5.50746978455129918063050764395, −5.16052783695257121279945934276, −4.25804450884861233973253832055, −2.97022727409248490972132171897, −1.52864835997380095223083001340, −0.878954898968080740854605256906,
1.56087167796996927417834091876, 2.04642552366789615559020104049, 3.10205122068549285682381847156, 4.08883051632040673056338765191, 4.67703488420814108205298399017, 5.79746747482598588582334750793, 6.99093144867118979164578867771, 7.32160880544288757699742539018, 7.988816694162300191061301765304, 8.780587617986931920600691956584