L(s) = 1 | + 5-s − 2·7-s − 11-s + 8·17-s − 8·19-s − 4·23-s + 25-s + 6·29-s − 2·35-s + 6·37-s + 2·41-s + 2·43-s + 4·47-s − 3·49-s + 2·53-s − 55-s + 12·59-s − 6·61-s + 8·67-s − 8·73-s + 2·77-s + 4·79-s + 6·83-s + 8·85-s + 10·89-s − 8·95-s − 10·97-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s − 0.301·11-s + 1.94·17-s − 1.83·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 0.338·35-s + 0.986·37-s + 0.312·41-s + 0.304·43-s + 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.134·55-s + 1.56·59-s − 0.768·61-s + 0.977·67-s − 0.936·73-s + 0.227·77-s + 0.450·79-s + 0.658·83-s + 0.867·85-s + 1.05·89-s − 0.820·95-s − 1.01·97-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.757932927 |
L(21) |
≈ |
1.757932927 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 11 | 1+T |
good | 7 | 1+2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1−8T+pT2 |
| 19 | 1+8T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.378529573197428734409008106681, −7.83877309088964992232876588117, −6.89297214817942897916236648043, −6.14340315396523346146302421076, −5.70325274306668947557808369172, −4.67076738944322484715966029500, −3.80817728324857729378799634204, −2.92165762439534383333189009412, −2.07609416527182384876181592530, −0.75347698742480715400167322922,
0.75347698742480715400167322922, 2.07609416527182384876181592530, 2.92165762439534383333189009412, 3.80817728324857729378799634204, 4.67076738944322484715966029500, 5.70325274306668947557808369172, 6.14340315396523346146302421076, 6.89297214817942897916236648043, 7.83877309088964992232876588117, 8.378529573197428734409008106681