Properties

Label 2-3960-1.1-c1-0-11
Degree $2$
Conductor $3960$
Sign $1$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 11-s + 8·17-s − 8·19-s − 4·23-s + 25-s + 6·29-s − 2·35-s + 6·37-s + 2·41-s + 2·43-s + 4·47-s − 3·49-s + 2·53-s − 55-s + 12·59-s − 6·61-s + 8·67-s − 8·73-s + 2·77-s + 4·79-s + 6·83-s + 8·85-s + 10·89-s − 8·95-s − 10·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.301·11-s + 1.94·17-s − 1.83·19-s − 0.834·23-s + 1/5·25-s + 1.11·29-s − 0.338·35-s + 0.986·37-s + 0.312·41-s + 0.304·43-s + 0.583·47-s − 3/7·49-s + 0.274·53-s − 0.134·55-s + 1.56·59-s − 0.768·61-s + 0.977·67-s − 0.936·73-s + 0.227·77-s + 0.450·79-s + 0.658·83-s + 0.867·85-s + 1.05·89-s − 0.820·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.757932927\)
\(L(\frac12)\) \(\approx\) \(1.757932927\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.378529573197428734409008106681, −7.83877309088964992232876588117, −6.89297214817942897916236648043, −6.14340315396523346146302421076, −5.70325274306668947557808369172, −4.67076738944322484715966029500, −3.80817728324857729378799634204, −2.92165762439534383333189009412, −2.07609416527182384876181592530, −0.75347698742480715400167322922, 0.75347698742480715400167322922, 2.07609416527182384876181592530, 2.92165762439534383333189009412, 3.80817728324857729378799634204, 4.67076738944322484715966029500, 5.70325274306668947557808369172, 6.14340315396523346146302421076, 6.89297214817942897916236648043, 7.83877309088964992232876588117, 8.378529573197428734409008106681

Graph of the $Z$-function along the critical line