L(s) = 1 | + (−1.48 + 1.67i)5-s − 0.806i·7-s + 11-s − 2.15i·13-s + 2.54i·17-s + 0.387·19-s + (−0.612 − 4.96i)25-s − 0.649·29-s − 4.96·31-s + (1.35 + 1.19i)35-s − 8.31i·37-s + 2.57·41-s + 0.806i·43-s − 1.61i·47-s + 6.35·49-s + ⋯ |
L(s) = 1 | + (−0.662 + 0.749i)5-s − 0.304i·7-s + 0.301·11-s − 0.598i·13-s + 0.617i·17-s + 0.0889·19-s + (−0.122 − 0.992i)25-s − 0.120·29-s − 0.891·31-s + (0.228 + 0.201i)35-s − 1.36i·37-s + 0.402·41-s + 0.122i·43-s − 0.235i·47-s + 0.907·49-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.749+0.662i)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)(0.749+0.662i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.749+0.662i
|
Analytic conductor: |
31.6207 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :1/2), 0.749+0.662i)
|
Particular Values
L(1) |
≈ |
1.328780112 |
L(21) |
≈ |
1.328780112 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1.48−1.67i)T |
| 11 | 1−T |
good | 7 | 1+0.806iT−7T2 |
| 13 | 1+2.15iT−13T2 |
| 17 | 1−2.54iT−17T2 |
| 19 | 1−0.387T+19T2 |
| 23 | 1−23T2 |
| 29 | 1+0.649T+29T2 |
| 31 | 1+4.96T+31T2 |
| 37 | 1+8.31iT−37T2 |
| 41 | 1−2.57T+41T2 |
| 43 | 1−0.806iT−43T2 |
| 47 | 1+1.61iT−47T2 |
| 53 | 1+0.649iT−53T2 |
| 59 | 1+0.649T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−3.22iT−67T2 |
| 71 | 1−4.64T+71T2 |
| 73 | 1−0.231iT−73T2 |
| 79 | 1+5.53T+79T2 |
| 83 | 1+4.08iT−83T2 |
| 89 | 1−4.88T+89T2 |
| 97 | 1+13.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.300619869525827167422648735934, −7.49360812902968019601627651602, −7.12025757518638308247896285041, −6.16950303703722986683957659284, −5.52131563365679899323424929709, −4.36755713742361140147646805301, −3.75182817350942971734839457904, −2.99279226181585655969390146757, −1.91487941403682733760385099362, −0.48678756386793239930030384512,
0.908211194320517475548899421632, 2.00936543981977051858977189747, 3.17528270631638288823377506234, 4.02665370140555710969453826940, 4.75780066247846898622091394497, 5.44391679698015372271050570936, 6.36337637072957191409205898995, 7.18587430024700143159514257431, 7.81830974237169641753753870784, 8.629218900745324072506938948162