Properties

Label 2-3960-5.4-c1-0-41
Degree $2$
Conductor $3960$
Sign $0.749 + 0.662i$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.48 + 1.67i)5-s − 0.806i·7-s + 11-s − 2.15i·13-s + 2.54i·17-s + 0.387·19-s + (−0.612 − 4.96i)25-s − 0.649·29-s − 4.96·31-s + (1.35 + 1.19i)35-s − 8.31i·37-s + 2.57·41-s + 0.806i·43-s − 1.61i·47-s + 6.35·49-s + ⋯
L(s)  = 1  + (−0.662 + 0.749i)5-s − 0.304i·7-s + 0.301·11-s − 0.598i·13-s + 0.617i·17-s + 0.0889·19-s + (−0.122 − 0.992i)25-s − 0.120·29-s − 0.891·31-s + (0.228 + 0.201i)35-s − 1.36i·37-s + 0.402·41-s + 0.122i·43-s − 0.235i·47-s + 0.907·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $0.749 + 0.662i$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3960} (3169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 0.749 + 0.662i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.328780112\)
\(L(\frac12)\) \(\approx\) \(1.328780112\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.48 - 1.67i)T \)
11 \( 1 - T \)
good7 \( 1 + 0.806iT - 7T^{2} \)
13 \( 1 + 2.15iT - 13T^{2} \)
17 \( 1 - 2.54iT - 17T^{2} \)
19 \( 1 - 0.387T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 0.649T + 29T^{2} \)
31 \( 1 + 4.96T + 31T^{2} \)
37 \( 1 + 8.31iT - 37T^{2} \)
41 \( 1 - 2.57T + 41T^{2} \)
43 \( 1 - 0.806iT - 43T^{2} \)
47 \( 1 + 1.61iT - 47T^{2} \)
53 \( 1 + 0.649iT - 53T^{2} \)
59 \( 1 + 0.649T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 3.22iT - 67T^{2} \)
71 \( 1 - 4.64T + 71T^{2} \)
73 \( 1 - 0.231iT - 73T^{2} \)
79 \( 1 + 5.53T + 79T^{2} \)
83 \( 1 + 4.08iT - 83T^{2} \)
89 \( 1 - 4.88T + 89T^{2} \)
97 \( 1 + 13.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.300619869525827167422648735934, −7.49360812902968019601627651602, −7.12025757518638308247896285041, −6.16950303703722986683957659284, −5.52131563365679899323424929709, −4.36755713742361140147646805301, −3.75182817350942971734839457904, −2.99279226181585655969390146757, −1.91487941403682733760385099362, −0.48678756386793239930030384512, 0.908211194320517475548899421632, 2.00936543981977051858977189747, 3.17528270631638288823377506234, 4.02665370140555710969453826940, 4.75780066247846898622091394497, 5.44391679698015372271050570936, 6.36337637072957191409205898995, 7.18587430024700143159514257431, 7.81830974237169641753753870784, 8.629218900745324072506938948162

Graph of the $Z$-function along the critical line