L(s) = 1 | + (−0.101 − 2.23i)5-s − 3.61i·7-s − 11-s − 0.816i·13-s − 1.81i·17-s − 0.723·19-s − 4.63i·23-s + (−4.97 + 0.451i)25-s + 0.539·29-s + 9.04·31-s + (−8.07 + 0.365i)35-s − 9.34i·37-s − 1.11·41-s + 5.63i·43-s − 2.01i·47-s + ⋯ |
L(s) = 1 | + (−0.0452 − 0.998i)5-s − 1.36i·7-s − 0.301·11-s − 0.226i·13-s − 0.440i·17-s − 0.165·19-s − 0.966i·23-s + (−0.995 + 0.0903i)25-s + 0.100·29-s + 1.62·31-s + (−1.36 + 0.0617i)35-s − 1.53i·37-s − 0.173·41-s + 0.859i·43-s − 0.294i·47-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.998+0.0452i)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)(−0.998+0.0452i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
−0.998+0.0452i
|
Analytic conductor: |
31.6207 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :1/2), −0.998+0.0452i)
|
Particular Values
L(1) |
≈ |
1.213763651 |
L(21) |
≈ |
1.213763651 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.101+2.23i)T |
| 11 | 1+T |
good | 7 | 1+3.61iT−7T2 |
| 13 | 1+0.816iT−13T2 |
| 17 | 1+1.81iT−17T2 |
| 19 | 1+0.723T+19T2 |
| 23 | 1+4.63iT−23T2 |
| 29 | 1−0.539T+29T2 |
| 31 | 1−9.04T+31T2 |
| 37 | 1+9.34iT−37T2 |
| 41 | 1+1.11T+41T2 |
| 43 | 1−5.63iT−43T2 |
| 47 | 1+2.01iT−47T2 |
| 53 | 1+1.29iT−53T2 |
| 59 | 1+7.11T+59T2 |
| 61 | 1−3.61T+61T2 |
| 67 | 1−2.26iT−67T2 |
| 71 | 1+11.8T+71T2 |
| 73 | 1+11.3iT−73T2 |
| 79 | 1−3.97T+79T2 |
| 83 | 1−2.50iT−83T2 |
| 89 | 1+6.19T+89T2 |
| 97 | 1−0.0431iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.028852081979971431458356147104, −7.51715643929440416266875472542, −6.67245136088507889008406678813, −5.86867735404551697887436885753, −4.83792775144416372279798957657, −4.44098523389621416629952339175, −3.58749476333353050667874754032, −2.45585132180528955356551279209, −1.17624228403865209930388803518, −0.36979971531639552493704920819,
1.64237019882859400662756937905, 2.61716776966925762533234054920, 3.15162807953014815920162333063, 4.24031132956456808128609004035, 5.21907877624769766392970568079, 5.97033151520452688486154517765, 6.49998633559746209478241185339, 7.33710350469875058697906346562, 8.178029604053932554450966592555, 8.685870821520992763738211509154