Properties

Label 2-3960-5.4-c1-0-47
Degree $2$
Conductor $3960$
Sign $0.825 + 0.564i$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.26 + 1.84i)5-s + 3.12i·7-s + 11-s + 0.710i·13-s − 7.65i·17-s − 1.02·19-s − 6.36i·23-s + (−1.81 − 4.65i)25-s − 0.234·29-s − 6.88·31-s + (−5.77 − 3.94i)35-s − 8.84i·37-s + 11.0·41-s − 6.28i·43-s − 3.15i·47-s + ⋯
L(s)  = 1  + (−0.564 + 0.825i)5-s + 1.18i·7-s + 0.301·11-s + 0.196i·13-s − 1.85i·17-s − 0.235·19-s − 1.32i·23-s + (−0.363 − 0.931i)25-s − 0.0434·29-s − 1.23·31-s + (−0.976 − 0.667i)35-s − 1.45i·37-s + 1.72·41-s − 0.957i·43-s − 0.459i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.825 + 0.564i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.825 + 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $0.825 + 0.564i$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3960} (3169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 0.825 + 0.564i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.254099522\)
\(L(\frac12)\) \(\approx\) \(1.254099522\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.26 - 1.84i)T \)
11 \( 1 - T \)
good7 \( 1 - 3.12iT - 7T^{2} \)
13 \( 1 - 0.710iT - 13T^{2} \)
17 \( 1 + 7.65iT - 17T^{2} \)
19 \( 1 + 1.02T + 19T^{2} \)
23 \( 1 + 6.36iT - 23T^{2} \)
29 \( 1 + 0.234T + 29T^{2} \)
31 \( 1 + 6.88T + 31T^{2} \)
37 \( 1 + 8.84iT - 37T^{2} \)
41 \( 1 - 11.0T + 41T^{2} \)
43 \( 1 + 6.28iT - 43T^{2} \)
47 \( 1 + 3.15iT - 47T^{2} \)
53 \( 1 - 8.79iT - 53T^{2} \)
59 \( 1 - 8.01T + 59T^{2} \)
61 \( 1 + 10.1T + 61T^{2} \)
67 \( 1 - 4.21iT - 67T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 - 5.47iT - 73T^{2} \)
79 \( 1 - 1.50T + 79T^{2} \)
83 \( 1 + 8.70iT - 83T^{2} \)
89 \( 1 - 4.64T + 89T^{2} \)
97 \( 1 + 17.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.500862104030783966189806008645, −7.43741939954125223515232345225, −7.09826667229669765028570438034, −6.16095256688566250823955591289, −5.50788666211757093467209597230, −4.56654254460117817164858187147, −3.72963928759149152589977376434, −2.67757905296130804655499703046, −2.26541971433270581174153569977, −0.43183182134641178541071802495, 0.982647284149790886781367879995, 1.76091786270180830376772280644, 3.42625216275978042920187260918, 3.91833009551222517443305690062, 4.59006632553667391901618487123, 5.53319187594069280193363213036, 6.32495464924314219399901250655, 7.20961304963735295382578053611, 7.914103497649092749273109546709, 8.303796876443072630377583720460

Graph of the $Z$-function along the critical line