L(s) = 1 | + (−0.365 + 0.930i)4-s + (−0.0747 − 0.997i)7-s + (−0.766 − 1.12i)13-s + (−0.733 − 0.680i)16-s + (−0.751 + 0.433i)19-s + (−0.900 + 0.433i)25-s + (0.955 + 0.294i)28-s + (0.258 − 0.149i)31-s + (−1.95 − 0.294i)37-s + (−1.57 + 0.487i)43-s + (−0.988 + 0.149i)49-s + (1.32 − 0.302i)52-s + (−1.73 + 0.680i)61-s + (0.900 − 0.433i)64-s + (−0.955 − 1.65i)67-s + ⋯ |
L(s) = 1 | + (−0.365 + 0.930i)4-s + (−0.0747 − 0.997i)7-s + (−0.766 − 1.12i)13-s + (−0.733 − 0.680i)16-s + (−0.751 + 0.433i)19-s + (−0.900 + 0.433i)25-s + (0.955 + 0.294i)28-s + (0.258 − 0.149i)31-s + (−1.95 − 0.294i)37-s + (−1.57 + 0.487i)43-s + (−0.988 + 0.149i)49-s + (1.32 − 0.302i)52-s + (−1.73 + 0.680i)61-s + (0.900 − 0.433i)64-s + (−0.955 − 1.65i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.772 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.772 + 0.634i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2727212436\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2727212436\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.0747 + 0.997i)T \) |
good | 2 | \( 1 + (0.365 - 0.930i)T^{2} \) |
| 5 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 13 | \( 1 + (0.766 + 1.12i)T + (-0.365 + 0.930i)T^{2} \) |
| 17 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 19 | \( 1 + (0.751 - 0.433i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 29 | \( 1 + (0.955 + 0.294i)T^{2} \) |
| 31 | \( 1 + (-0.258 + 0.149i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1.95 + 0.294i)T + (0.955 + 0.294i)T^{2} \) |
| 41 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 43 | \( 1 + (1.57 - 0.487i)T + (0.826 - 0.563i)T^{2} \) |
| 47 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 53 | \( 1 + (0.955 - 0.294i)T^{2} \) |
| 59 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 61 | \( 1 + (1.73 - 0.680i)T + (0.733 - 0.680i)T^{2} \) |
| 67 | \( 1 + (0.955 + 1.65i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-1.55 - 0.116i)T + (0.988 + 0.149i)T^{2} \) |
| 79 | \( 1 + (0.365 - 0.632i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 89 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 97 | \( 1 + (-0.975 + 0.563i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.183395778473548497160757121907, −7.67606923027040132982870027325, −7.11272735513857426189724806597, −6.23637717363177241884301148002, −5.17040075117623616752766003238, −4.50800879976893349563074696722, −3.61998346485067711844705851138, −3.09775382930557823863991953268, −1.83805941881446223057329949175, −0.14215645742292930269964619854,
1.73367153749849537062125931945, 2.30767757282308522270682861132, 3.58484200205995139102355500421, 4.70262773830148616302779971882, 5.03672113677345678144961668116, 6.05349728393936848659621120562, 6.51702807394104356457390505223, 7.34970458971715457620571433426, 8.554969646127169117557102556429, 8.838590470246098502669794011072