L(s) = 1 | + 2-s − 4·4-s − 3·7-s − 5·8-s − 8·9-s − 9·11-s + 11·13-s − 3·14-s + 6·16-s − 6·17-s − 8·18-s − 9·22-s + 23-s − 19·25-s + 11·26-s − 27-s + 12·28-s + 13·29-s + 16·31-s + 8·32-s − 6·34-s + 32·36-s + 18·37-s + 4·41-s − 43-s + 36·44-s + 46-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 2·4-s − 1.13·7-s − 1.76·8-s − 8/3·9-s − 2.71·11-s + 3.05·13-s − 0.801·14-s + 3/2·16-s − 1.45·17-s − 1.88·18-s − 1.91·22-s + 0.208·23-s − 3.79·25-s + 2.15·26-s − 0.192·27-s + 2.26·28-s + 2.41·29-s + 2.87·31-s + 1.41·32-s − 1.02·34-s + 16/3·36-s + 2.95·37-s + 0.624·41-s − 0.152·43-s + 5.42·44-s + 0.147·46-s + ⋯ |
Λ(s)=(=((119⋅1918)s/2ΓC(s)9L(s)Λ(2−s)
Λ(s)=(=((119⋅1918)s/2ΓC(s+1/2)9L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.636381752 |
L(21) |
≈ |
5.636381752 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | (1+T)9 |
| 19 | 1 |
good | 2 | 1−T+5T2−p2T3+13T4−3pT5+5p2T6−pT7+23T8+11T9+23pT10−p3T11+5p5T12−3p5T13+13p5T14−p8T15+5p7T16−p8T17+p9T18 |
| 3 | 1+8T2+T3+35T4+103T6−46T7+283T8−236T9+283pT10−46p2T11+103p3T12+35p5T14+p6T15+8p7T16+p9T18 |
| 5 | 1+19T2+7T3+201T4+81T5+1589T6+558T7+9788T8+3193T9+9788pT10+558p2T11+1589p3T12+81p4T13+201p5T14+7p6T15+19p7T16+p9T18 |
| 7 | 1+3T+39T2+104T3+745T4+1780T5+9367T6+19805T7+86060T8+159832T9+86060pT10+19805p2T11+9367p3T12+1780p4T13+745p5T14+104p6T15+39p7T16+3p8T17+p9T18 |
| 13 | 1−11T+119T2−813T3+5400T4−27993T5+10943pT6−605116T7+2545975T8−9210564T9+2545975pT10−605116p2T11+10943p4T12−27993p4T13+5400p5T14−813p6T15+119p7T16−11p8T17+p9T18 |
| 17 | 1+6T+111T2+617T3+5790T4+30432T5+191081T6+929784T7+4435197T8+19079666T9+4435197pT10+929784p2T11+191081p3T12+30432p4T13+5790p5T14+617p6T15+111p7T16+6p8T17+p9T18 |
| 23 | 1−T+147T2−70T3+10085T4+248T5+433001T6+159707T7+13203986T8+5940710T9+13203986pT10+159707p2T11+433001p3T12+248p4T13+10085p5T14−70p6T15+147p7T16−p8T17+p9T18 |
| 29 | 1−13T+223T2−1853T3+19394T4−126757T5+1052735T6−5884726T7+41347885T8−199424468T9+41347885pT10−5884726p2T11+1052735p3T12−126757p4T13+19394p5T14−1853p6T15+223p7T16−13p8T17+p9T18 |
| 31 | 1−16T+204T2−1637T3+12380T4−74671T5+16592pT6−3228381T7+22145447T8−124293758T9+22145447pT10−3228381p2T11+16592p4T12−74671p4T13+12380p5T14−1637p6T15+204p7T16−16p8T17+p9T18 |
| 37 | 1−18T+255T2−2371T3+19420T4−126102T5+817729T6−4747378T7+30516247T8−177678966T9+30516247pT10−4747378p2T11+817729p3T12−126102p4T13+19420p5T14−2371p6T15+255p7T16−18p8T17+p9T18 |
| 41 | 1−4T+102T2−466T3+7319T4−40452T5+399061T6−2450030T7+19484933T8−117806128T9+19484933pT10−2450030p2T11+399061p3T12−40452p4T13+7319p5T14−466p6T15+102p7T16−4p8T17+p9T18 |
| 43 | 1+T+245T2+336T3+29619T4+49988T5+54415pT6+4238487T7+133607998T8+226251824T9+133607998pT10+4238487p2T11+54415p4T12+49988p4T13+29619p5T14+336p6T15+245p7T16+p8T17+p9T18 |
| 47 | 1−14T+389T2−4450T3+67899T4−643673T5+7043097T6−55779851T7+481927342T8−3186952630T9+481927342pT10−55779851p2T11+7043097p3T12−643673p4T13+67899p5T14−4450p6T15+389p7T16−14p8T17+p9T18 |
| 53 | 1+4T+262T2+992T3+29948T4+90003T5+2045897T6+3553202T7+106752274T8+103234313T9+106752274pT10+3553202p2T11+2045897p3T12+90003p4T13+29948p5T14+992p6T15+262p7T16+4p8T17+p9T18 |
| 59 | 1−31T+733T2−12305T3+178108T4−2169823T5+23798005T6−231234820T7+2056073739T8−16473750500T9+2056073739pT10−231234820p2T11+23798005p3T12−2169823p4T13+178108p5T14−12305p6T15+733p7T16−31p8T17+p9T18 |
| 61 | 1+3T+333T2+810T3+54985T4+106406T5+5915573T6+9104805T7+466642044T8+607593492T9+466642044pT10+9104805p2T11+5915573p3T12+106406p4T13+54985p5T14+810p6T15+333p7T16+3p8T17+p9T18 |
| 67 | 1+2T+173T2−900T3+16941T4−154631T5+1909993T6−13954719T7+169271824T8−1036918952T9+169271824pT10−13954719p2T11+1909993p3T12−154631p4T13+16941p5T14−900p6T15+173p7T16+2p8T17+p9T18 |
| 71 | 1+12T+482T2+4271T3+101775T4+706390T5+13179487T6+75020186T7+1217547613T8+5975256326T9+1217547613pT10+75020186p2T11+13179487p3T12+706390p4T13+101775p5T14+4271p6T15+482p7T16+12p8T17+p9T18 |
| 73 | 1−26T+735T2−12394T3+209699T4−2688291T5+34149005T6−354861739T7+3639401356T8−31323905962T9+3639401356pT10−354861739p2T11+34149005p3T12−2688291p4T13+209699p5T14−12394p6T15+735p7T16−26p8T17+p9T18 |
| 79 | 1−31T+742T2−14342T3+229347T4−3223040T5+40513046T6−455576998T7+4654775821T8−43478831993T9+4654775821pT10−455576998p2T11+40513046p3T12−3223040p4T13+229347p5T14−14342p6T15+742p7T16−31p8T17+p9T18 |
| 83 | 1−18T+592T2−8721T3+156875T4−1984688T5+25392575T6−281639548T7+2859446887T8−27675516522T9+2859446887pT10−281639548p2T11+25392575p3T12−1984688p4T13+156875p5T14−8721p6T15+592p7T16−18p8T17+p9T18 |
| 89 | 1+11T+549T2+4995T3+1502pT4+981629T5+19768773T6+117305546T7+23914739pT8+10991786538T9+23914739p2T10+117305546p2T11+19768773p3T12+981629p4T13+1502p6T14+4995p6T15+549p7T16+11p8T17+p9T18 |
| 97 | 1−16T+302T2−2744T3+37192T4−307461T5+5192125T6−42248018T7+570256950T8−4194757543T9+570256950pT10−42248018p2T11+5192125p3T12−307461p4T13+37192p5T14−2744p6T15+302p7T16−16p8T17+p9T18 |
show more | |
show less | |
L(s)=p∏ j=1∏18(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.13889567592382093711666147100, −3.07932697147533834143305337925, −3.07732368638354055432364002204, −2.97040640940708571810762122708, −2.94261263769254497762922203794, −2.73106870086836540342027545088, −2.47162303233855025253627227893, −2.40921043000739861268056007269, −2.37617446364266621506029660228, −2.26449448988682815268792259238, −2.22640354267102376513955543162, −2.15596250493065475270497708474, −1.99492257291340873635942229756, −1.73598120307268340635087218015, −1.65029667241330541301024418459, −1.64184389458348514774280727959, −1.20221735992101812742114563677, −1.07406684116710787277961086867, −1.05696608622015937956569481003, −0.797850546832835060022784538220, −0.64901126752227560035742641770, −0.44026495043847370435503332121, −0.43589813136329832599549602497, −0.42287732364286712625452112062, −0.28706210617433026823864249467,
0.28706210617433026823864249467, 0.42287732364286712625452112062, 0.43589813136329832599549602497, 0.44026495043847370435503332121, 0.64901126752227560035742641770, 0.797850546832835060022784538220, 1.05696608622015937956569481003, 1.07406684116710787277961086867, 1.20221735992101812742114563677, 1.64184389458348514774280727959, 1.65029667241330541301024418459, 1.73598120307268340635087218015, 1.99492257291340873635942229756, 2.15596250493065475270497708474, 2.22640354267102376513955543162, 2.26449448988682815268792259238, 2.37617446364266621506029660228, 2.40921043000739861268056007269, 2.47162303233855025253627227893, 2.73106870086836540342027545088, 2.94261263769254497762922203794, 2.97040640940708571810762122708, 3.07732368638354055432364002204, 3.07932697147533834143305337925, 3.13889567592382093711666147100
Plot not available for L-functions of degree greater than 10.