L(s) = 1 | + 2.09·2-s + 2.89·3-s + 2.38·4-s − 3.61·5-s + 6.05·6-s + 0.264·7-s + 0.802·8-s + 5.36·9-s − 7.55·10-s + 11-s + 6.89·12-s + 5.66·13-s + 0.554·14-s − 10.4·15-s − 3.08·16-s + 0.577·17-s + 11.2·18-s − 8.60·20-s + 0.766·21-s + 2.09·22-s + 2.58·23-s + 2.32·24-s + 8.03·25-s + 11.8·26-s + 6.84·27-s + 0.631·28-s + 7.43·29-s + ⋯ |
L(s) = 1 | + 1.48·2-s + 1.67·3-s + 1.19·4-s − 1.61·5-s + 2.47·6-s + 0.100·7-s + 0.283·8-s + 1.78·9-s − 2.39·10-s + 0.301·11-s + 1.98·12-s + 1.57·13-s + 0.148·14-s − 2.69·15-s − 0.771·16-s + 0.140·17-s + 2.64·18-s − 1.92·20-s + 0.167·21-s + 0.446·22-s + 0.539·23-s + 0.473·24-s + 1.60·25-s + 2.32·26-s + 1.31·27-s + 0.119·28-s + 1.38·29-s + ⋯ |
Λ(s)=(=(3971s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3971s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.654371882 |
L(21) |
≈ |
6.654371882 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1−T |
| 19 | 1 |
good | 2 | 1−2.09T+2T2 |
| 3 | 1−2.89T+3T2 |
| 5 | 1+3.61T+5T2 |
| 7 | 1−0.264T+7T2 |
| 13 | 1−5.66T+13T2 |
| 17 | 1−0.577T+17T2 |
| 23 | 1−2.58T+23T2 |
| 29 | 1−7.43T+29T2 |
| 31 | 1−9.21T+31T2 |
| 37 | 1+2.09T+37T2 |
| 41 | 1−0.639T+41T2 |
| 43 | 1−5.69T+43T2 |
| 47 | 1+4.15T+47T2 |
| 53 | 1+5.18T+53T2 |
| 59 | 1−4.63T+59T2 |
| 61 | 1+4.89T+61T2 |
| 67 | 1−8.70T+67T2 |
| 71 | 1−3.21T+71T2 |
| 73 | 1−14.8T+73T2 |
| 79 | 1−2.18T+79T2 |
| 83 | 1−2.42T+83T2 |
| 89 | 1+18.0T+89T2 |
| 97 | 1+15.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.243261883665974773754177397806, −7.956910211790867722598164137454, −6.85074093403001164802849937724, −6.42695095606757021911975160421, −5.07617787408961151208254331274, −4.24941601220466938477238866653, −3.87141055446800545503681276421, −3.21101500119157364240657357836, −2.67308558508209002441985888390, −1.20508341376257433977586716432,
1.20508341376257433977586716432, 2.67308558508209002441985888390, 3.21101500119157364240657357836, 3.87141055446800545503681276421, 4.24941601220466938477238866653, 5.07617787408961151208254331274, 6.42695095606757021911975160421, 6.85074093403001164802849937724, 7.956910211790867722598164137454, 8.243261883665974773754177397806