L(s) = 1 | + 2.66·2-s − 1.82·3-s + 5.09·4-s − 1.36·5-s − 4.86·6-s + 0.192·7-s + 8.23·8-s + 0.334·9-s − 3.64·10-s + 11-s − 9.29·12-s + 1.93·13-s + 0.512·14-s + 2.49·15-s + 11.7·16-s + 2.15·17-s + 0.891·18-s − 6.96·20-s − 0.351·21-s + 2.66·22-s + 2.66·23-s − 15.0·24-s − 3.12·25-s + 5.16·26-s + 4.86·27-s + 0.979·28-s − 10.1·29-s + ⋯ |
L(s) = 1 | + 1.88·2-s − 1.05·3-s + 2.54·4-s − 0.611·5-s − 1.98·6-s + 0.0727·7-s + 2.91·8-s + 0.111·9-s − 1.15·10-s + 0.301·11-s − 2.68·12-s + 0.538·13-s + 0.136·14-s + 0.644·15-s + 2.93·16-s + 0.521·17-s + 0.210·18-s − 1.55·20-s − 0.0766·21-s + 0.567·22-s + 0.556·23-s − 3.06·24-s − 0.625·25-s + 1.01·26-s + 0.936·27-s + 0.185·28-s − 1.89·29-s + ⋯ |
Λ(s)=(=(3971s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3971s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.348481881 |
L(21) |
≈ |
4.348481881 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1−T |
| 19 | 1 |
good | 2 | 1−2.66T+2T2 |
| 3 | 1+1.82T+3T2 |
| 5 | 1+1.36T+5T2 |
| 7 | 1−0.192T+7T2 |
| 13 | 1−1.93T+13T2 |
| 17 | 1−2.15T+17T2 |
| 23 | 1−2.66T+23T2 |
| 29 | 1+10.1T+29T2 |
| 31 | 1−6.26T+31T2 |
| 37 | 1−10.3T+37T2 |
| 41 | 1−3.77T+41T2 |
| 43 | 1−9.07T+43T2 |
| 47 | 1−3.51T+47T2 |
| 53 | 1+5.13T+53T2 |
| 59 | 1−10.4T+59T2 |
| 61 | 1−0.568T+61T2 |
| 67 | 1−8.04T+67T2 |
| 71 | 1+16.1T+71T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1−8.27T+79T2 |
| 83 | 1−2.24T+83T2 |
| 89 | 1−0.963T+89T2 |
| 97 | 1−6.81T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.993891456192566923062625032628, −7.44936185341041237807252170889, −6.55463034759847492080231487169, −5.98492372971616364472475344210, −5.50927878622559866672741885199, −4.68148364560363641971132670745, −4.03585780520763248969998019851, −3.33951021657688304989089571369, −2.32676380962450730497981884878, −0.980506032160636117467575452157,
0.980506032160636117467575452157, 2.32676380962450730497981884878, 3.33951021657688304989089571369, 4.03585780520763248969998019851, 4.68148364560363641971132670745, 5.50927878622559866672741885199, 5.98492372971616364472475344210, 6.55463034759847492080231487169, 7.44936185341041237807252170889, 7.993891456192566923062625032628