Properties

Label 2-3971-1.1-c1-0-129
Degree $2$
Conductor $3971$
Sign $1$
Analytic cond. $31.7085$
Root an. cond. $5.63103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.66·2-s − 1.82·3-s + 5.09·4-s − 1.36·5-s − 4.86·6-s + 0.192·7-s + 8.23·8-s + 0.334·9-s − 3.64·10-s + 11-s − 9.29·12-s + 1.93·13-s + 0.512·14-s + 2.49·15-s + 11.7·16-s + 2.15·17-s + 0.891·18-s − 6.96·20-s − 0.351·21-s + 2.66·22-s + 2.66·23-s − 15.0·24-s − 3.12·25-s + 5.16·26-s + 4.86·27-s + 0.979·28-s − 10.1·29-s + ⋯
L(s)  = 1  + 1.88·2-s − 1.05·3-s + 2.54·4-s − 0.611·5-s − 1.98·6-s + 0.0727·7-s + 2.91·8-s + 0.111·9-s − 1.15·10-s + 0.301·11-s − 2.68·12-s + 0.538·13-s + 0.136·14-s + 0.644·15-s + 2.93·16-s + 0.521·17-s + 0.210·18-s − 1.55·20-s − 0.0766·21-s + 0.567·22-s + 0.556·23-s − 3.06·24-s − 0.625·25-s + 1.01·26-s + 0.936·27-s + 0.185·28-s − 1.89·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3971\)    =    \(11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(31.7085\)
Root analytic conductor: \(5.63103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3971,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.348481881\)
\(L(\frac12)\) \(\approx\) \(4.348481881\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - 2.66T + 2T^{2} \)
3 \( 1 + 1.82T + 3T^{2} \)
5 \( 1 + 1.36T + 5T^{2} \)
7 \( 1 - 0.192T + 7T^{2} \)
13 \( 1 - 1.93T + 13T^{2} \)
17 \( 1 - 2.15T + 17T^{2} \)
23 \( 1 - 2.66T + 23T^{2} \)
29 \( 1 + 10.1T + 29T^{2} \)
31 \( 1 - 6.26T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 - 3.77T + 41T^{2} \)
43 \( 1 - 9.07T + 43T^{2} \)
47 \( 1 - 3.51T + 47T^{2} \)
53 \( 1 + 5.13T + 53T^{2} \)
59 \( 1 - 10.4T + 59T^{2} \)
61 \( 1 - 0.568T + 61T^{2} \)
67 \( 1 - 8.04T + 67T^{2} \)
71 \( 1 + 16.1T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 - 8.27T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 - 0.963T + 89T^{2} \)
97 \( 1 - 6.81T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.993891456192566923062625032628, −7.44936185341041237807252170889, −6.55463034759847492080231487169, −5.98492372971616364472475344210, −5.50927878622559866672741885199, −4.68148364560363641971132670745, −4.03585780520763248969998019851, −3.33951021657688304989089571369, −2.32676380962450730497981884878, −0.980506032160636117467575452157, 0.980506032160636117467575452157, 2.32676380962450730497981884878, 3.33951021657688304989089571369, 4.03585780520763248969998019851, 4.68148364560363641971132670745, 5.50927878622559866672741885199, 5.98492372971616364472475344210, 6.55463034759847492080231487169, 7.44936185341041237807252170889, 7.993891456192566923062625032628

Graph of the $Z$-function along the critical line