L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)12-s + (−1.43 − 0.524i)13-s + (0.766 + 0.642i)16-s + 19-s + (−0.5 − 0.866i)21-s + (0.766 − 0.642i)25-s + (−0.5 + 0.866i)27-s + (−0.939 + 0.342i)28-s + 0.347·31-s + (0.766 + 0.642i)36-s + (0.939 + 1.62i)37-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)12-s + (−1.43 − 0.524i)13-s + (0.766 + 0.642i)16-s + 19-s + (−0.5 − 0.866i)21-s + (0.766 − 0.642i)25-s + (−0.5 + 0.866i)27-s + (−0.939 + 0.342i)28-s + 0.347·31-s + (0.766 + 0.642i)36-s + (0.939 + 1.62i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0482 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0482 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7256875578\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7256875578\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.173 + 0.984i)T \) |
| 7 | \( 1 + (-0.766 + 0.642i)T \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 5 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 - 0.347T + T^{2} \) |
| 37 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.266 + 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 97 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39971121350964962093197447840, −10.22767529525538512009781714566, −9.464273766673610219497398723590, −8.236744825370847393035994705925, −7.75615800283399070077671007313, −6.65714965002717709821980833927, −5.34682232659847370524693912663, −4.54587117556312544680734145058, −2.89670239068255967765801712715, −1.14321656026998932375487104648,
2.58586294249349647645969974647, 3.92077648173447361440386377295, 4.94913824892147118531454796889, 5.44230536664703128485029386056, 7.34591780398307979451048884502, 8.271491775377567494938853959393, 9.202772814669257768945021063750, 9.602873384658710745451509750324, 10.74691189946811093514962714645, 11.77109955343334553069363208068