L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)12-s + (−1.43 − 0.524i)13-s + (0.766 + 0.642i)16-s + 19-s + (−0.5 − 0.866i)21-s + (0.766 − 0.642i)25-s + (−0.5 + 0.866i)27-s + (−0.939 + 0.342i)28-s + 0.347·31-s + (0.766 + 0.642i)36-s + (0.939 + 1.62i)37-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)12-s + (−1.43 − 0.524i)13-s + (0.766 + 0.642i)16-s + 19-s + (−0.5 − 0.866i)21-s + (0.766 − 0.642i)25-s + (−0.5 + 0.866i)27-s + (−0.939 + 0.342i)28-s + 0.347·31-s + (0.766 + 0.642i)36-s + (0.939 + 1.62i)37-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.0482+0.998i)Λ(1−s)
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.0482+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
−0.0482+0.998i
|
Analytic conductor: |
0.199126 |
Root analytic conductor: |
0.446236 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :0), −0.0482+0.998i)
|
Particular Values
L(21) |
≈ |
0.7256875578 |
L(21) |
≈ |
0.7256875578 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.173+0.984i)T |
| 7 | 1+(−0.766+0.642i)T |
| 19 | 1−T |
good | 2 | 1+(0.939+0.342i)T2 |
| 5 | 1+(−0.766+0.642i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 17 | 1+(−0.766+0.642i)T2 |
| 23 | 1+(−0.173+0.984i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1−0.347T+T2 |
| 37 | 1+(−0.939−1.62i)T+(−0.5+0.866i)T2 |
| 41 | 1+(−0.766+0.642i)T2 |
| 43 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
| 47 | 1+(−0.766−0.642i)T2 |
| 53 | 1+(−0.766−0.642i)T2 |
| 59 | 1+(−0.766+0.642i)T2 |
| 61 | 1+(−0.266+0.223i)T+(0.173−0.984i)T2 |
| 67 | 1+(−0.266−1.50i)T+(−0.939+0.342i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+(−0.266+1.50i)T+(−0.939−0.342i)T2 |
| 79 | 1+(−0.266−0.223i)T+(0.173+0.984i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(0.939−0.342i)T2 |
| 97 | 1+(0.766+0.642i)T+(0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39971121350964962093197447840, −10.22767529525538512009781714566, −9.464273766673610219497398723590, −8.236744825370847393035994705925, −7.75615800283399070077671007313, −6.65714965002717709821980833927, −5.34682232659847370524693912663, −4.54587117556312544680734145058, −2.89670239068255967765801712715, −1.14321656026998932375487104648,
2.58586294249349647645969974647, 3.92077648173447361440386377295, 4.94913824892147118531454796889, 5.44230536664703128485029386056, 7.34591780398307979451048884502, 8.271491775377567494938853959393, 9.202772814669257768945021063750, 9.602873384658710745451509750324, 10.74691189946811093514962714645, 11.77109955343334553069363208068