L(s) = 1 | + (−207. − 468. i)2-s − 4.12e3i·3-s + (−1.75e5 + 1.94e5i)4-s − 1.32e6·5-s + (−1.93e6 + 8.56e5i)6-s + 1.88e7i·7-s + (1.27e8 + 4.20e7i)8-s + 3.70e8·9-s + (2.74e8 + 6.18e8i)10-s + 2.94e9i·11-s + (8.02e8 + 7.26e8i)12-s + 2.06e9·13-s + (8.84e9 − 3.92e9i)14-s + 5.45e9i·15-s + (−6.79e9 − 6.83e10i)16-s − 1.59e11·17-s + ⋯ |
L(s) = 1 | + (−0.405 − 0.914i)2-s − 0.209i·3-s + (−0.671 + 0.741i)4-s − 0.676·5-s + (−0.191 + 0.0850i)6-s + 0.468i·7-s + (0.949 + 0.313i)8-s + 0.956·9-s + (0.274 + 0.618i)10-s + 1.24i·11-s + (0.155 + 0.140i)12-s + 0.194·13-s + (0.427 − 0.189i)14-s + 0.141i·15-s + (−0.0988 − 0.995i)16-s − 1.34·17-s + ⋯ |
Λ(s)=(=(4s/2ΓC(s)L(s)(0.671−0.741i)Λ(19−s)
Λ(s)=(=(4s/2ΓC(s+9)L(s)(0.671−0.741i)Λ(1−s)
Degree: |
2 |
Conductor: |
4
= 22
|
Sign: |
0.671−0.741i
|
Analytic conductor: |
8.21544 |
Root analytic conductor: |
2.86625 |
Motivic weight: |
18 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4, ( :9), 0.671−0.741i)
|
Particular Values
L(219) |
≈ |
0.736972+0.326864i |
L(21) |
≈ |
0.736972+0.326864i |
L(10) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(207.+468.i)T |
good | 3 | 1+4.12e3iT−3.87e8T2 |
| 5 | 1+1.32e6T+3.81e12T2 |
| 7 | 1−1.88e7iT−1.62e15T2 |
| 11 | 1−2.94e9iT−5.55e18T2 |
| 13 | 1−2.06e9T+1.12e20T2 |
| 17 | 1+1.59e11T+1.40e22T2 |
| 19 | 1−3.75e11iT−1.04e23T2 |
| 23 | 1−3.51e12iT−3.24e24T2 |
| 29 | 1−1.15e12T+2.10e26T2 |
| 31 | 1+2.94e13iT−6.99e26T2 |
| 37 | 1−1.43e14T+1.68e28T2 |
| 41 | 1+3.41e14T+1.07e29T2 |
| 43 | 1−1.16e14iT−2.52e29T2 |
| 47 | 1−1.28e15iT−1.25e30T2 |
| 53 | 1+9.01e14T+1.08e31T2 |
| 59 | 1+1.35e16iT−7.50e31T2 |
| 61 | 1−1.92e15T+1.36e32T2 |
| 67 | 1−3.28e16iT−7.40e32T2 |
| 71 | 1−1.05e16iT−2.10e33T2 |
| 73 | 1+5.27e16T+3.46e33T2 |
| 79 | 1+2.46e16iT−1.43e34T2 |
| 83 | 1+1.57e17iT−3.49e34T2 |
| 89 | 1+1.76e17T+1.22e35T2 |
| 97 | 1−8.50e16T+5.77e35T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−20.34571198220967397692843563119, −19.00190758990131536135033455742, −17.72161780219575275169908398381, −15.54618515575670601694238318600, −13.02330194840678990713526303929, −11.66607022821518641598049061629, −9.692240712770639587396648781700, −7.65251093993026270030348420835, −4.14517795804589275651047091905, −1.79520958841218477442810051099,
0.49163872616787734541886495472, 4.37445666083121237427271949221, 6.81331802226156844595576856278, 8.626510779856763090465269347117, 10.71803566192251030818862201420, 13.49216942491982570938235538336, 15.39421368100598034060522978462, 16.48525854322644381185407175302, 18.32617090184924152968053851625, 19.74051055015451642268897876038