L(s) = 1 | + (−207. − 468. i)2-s − 4.12e3i·3-s + (−1.75e5 + 1.94e5i)4-s − 1.32e6·5-s + (−1.93e6 + 8.56e5i)6-s + 1.88e7i·7-s + (1.27e8 + 4.20e7i)8-s + 3.70e8·9-s + (2.74e8 + 6.18e8i)10-s + 2.94e9i·11-s + (8.02e8 + 7.26e8i)12-s + 2.06e9·13-s + (8.84e9 − 3.92e9i)14-s + 5.45e9i·15-s + (−6.79e9 − 6.83e10i)16-s − 1.59e11·17-s + ⋯ |
L(s) = 1 | + (−0.405 − 0.914i)2-s − 0.209i·3-s + (−0.671 + 0.741i)4-s − 0.676·5-s + (−0.191 + 0.0850i)6-s + 0.468i·7-s + (0.949 + 0.313i)8-s + 0.956·9-s + (0.274 + 0.618i)10-s + 1.24i·11-s + (0.155 + 0.140i)12-s + 0.194·13-s + (0.427 − 0.189i)14-s + 0.141i·15-s + (−0.0988 − 0.995i)16-s − 1.34·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 - 0.741i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (0.671 - 0.741i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{19}{2})\) |
\(\approx\) |
\(0.736972 + 0.326864i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.736972 + 0.326864i\) |
\(L(10)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (207. + 468. i)T \) |
good | 3 | \( 1 + 4.12e3iT - 3.87e8T^{2} \) |
| 5 | \( 1 + 1.32e6T + 3.81e12T^{2} \) |
| 7 | \( 1 - 1.88e7iT - 1.62e15T^{2} \) |
| 11 | \( 1 - 2.94e9iT - 5.55e18T^{2} \) |
| 13 | \( 1 - 2.06e9T + 1.12e20T^{2} \) |
| 17 | \( 1 + 1.59e11T + 1.40e22T^{2} \) |
| 19 | \( 1 - 3.75e11iT - 1.04e23T^{2} \) |
| 23 | \( 1 - 3.51e12iT - 3.24e24T^{2} \) |
| 29 | \( 1 - 1.15e12T + 2.10e26T^{2} \) |
| 31 | \( 1 + 2.94e13iT - 6.99e26T^{2} \) |
| 37 | \( 1 - 1.43e14T + 1.68e28T^{2} \) |
| 41 | \( 1 + 3.41e14T + 1.07e29T^{2} \) |
| 43 | \( 1 - 1.16e14iT - 2.52e29T^{2} \) |
| 47 | \( 1 - 1.28e15iT - 1.25e30T^{2} \) |
| 53 | \( 1 + 9.01e14T + 1.08e31T^{2} \) |
| 59 | \( 1 + 1.35e16iT - 7.50e31T^{2} \) |
| 61 | \( 1 - 1.92e15T + 1.36e32T^{2} \) |
| 67 | \( 1 - 3.28e16iT - 7.40e32T^{2} \) |
| 71 | \( 1 - 1.05e16iT - 2.10e33T^{2} \) |
| 73 | \( 1 + 5.27e16T + 3.46e33T^{2} \) |
| 79 | \( 1 + 2.46e16iT - 1.43e34T^{2} \) |
| 83 | \( 1 + 1.57e17iT - 3.49e34T^{2} \) |
| 89 | \( 1 + 1.76e17T + 1.22e35T^{2} \) |
| 97 | \( 1 - 8.50e16T + 5.77e35T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.34571198220967397692843563119, −19.00190758990131536135033455742, −17.72161780219575275169908398381, −15.54618515575670601694238318600, −13.02330194840678990713526303929, −11.66607022821518641598049061629, −9.692240712770639587396648781700, −7.65251093993026270030348420835, −4.14517795804589275651047091905, −1.79520958841218477442810051099,
0.49163872616787734541886495472, 4.37445666083121237427271949221, 6.81331802226156844595576856278, 8.626510779856763090465269347117, 10.71803566192251030818862201420, 13.49216942491982570938235538336, 15.39421368100598034060522978462, 16.48525854322644381185407175302, 18.32617090184924152968053851625, 19.74051055015451642268897876038