Properties

Label 2-40-1.1-c3-0-0
Degree $2$
Conductor $40$
Sign $1$
Analytic cond. $2.36007$
Root an. cond. $1.53625$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 5·5-s + 16·7-s − 11·9-s + 36·11-s − 42·13-s + 20·15-s − 110·17-s − 116·19-s + 64·21-s + 16·23-s + 25·25-s − 152·27-s + 198·29-s + 240·31-s + 144·33-s + 80·35-s − 258·37-s − 168·39-s + 442·41-s − 292·43-s − 55·45-s + 392·47-s − 87·49-s − 440·51-s + 142·53-s + 180·55-s + ⋯
L(s)  = 1  + 0.769·3-s + 0.447·5-s + 0.863·7-s − 0.407·9-s + 0.986·11-s − 0.896·13-s + 0.344·15-s − 1.56·17-s − 1.40·19-s + 0.665·21-s + 0.145·23-s + 1/5·25-s − 1.08·27-s + 1.26·29-s + 1.39·31-s + 0.759·33-s + 0.386·35-s − 1.14·37-s − 0.689·39-s + 1.68·41-s − 1.03·43-s − 0.182·45-s + 1.21·47-s − 0.253·49-s − 1.20·51-s + 0.368·53-s + 0.441·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40\)    =    \(2^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(2.36007\)
Root analytic conductor: \(1.53625\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.677307176\)
\(L(\frac12)\) \(\approx\) \(1.677307176\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
good3 \( 1 - 4 T + p^{3} T^{2} \)
7 \( 1 - 16 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 + 42 T + p^{3} T^{2} \)
17 \( 1 + 110 T + p^{3} T^{2} \)
19 \( 1 + 116 T + p^{3} T^{2} \)
23 \( 1 - 16 T + p^{3} T^{2} \)
29 \( 1 - 198 T + p^{3} T^{2} \)
31 \( 1 - 240 T + p^{3} T^{2} \)
37 \( 1 + 258 T + p^{3} T^{2} \)
41 \( 1 - 442 T + p^{3} T^{2} \)
43 \( 1 + 292 T + p^{3} T^{2} \)
47 \( 1 - 392 T + p^{3} T^{2} \)
53 \( 1 - 142 T + p^{3} T^{2} \)
59 \( 1 + 348 T + p^{3} T^{2} \)
61 \( 1 + 570 T + p^{3} T^{2} \)
67 \( 1 - 692 T + p^{3} T^{2} \)
71 \( 1 - 168 T + p^{3} T^{2} \)
73 \( 1 + 134 T + p^{3} T^{2} \)
79 \( 1 - 784 T + p^{3} T^{2} \)
83 \( 1 - 564 T + p^{3} T^{2} \)
89 \( 1 - 1034 T + p^{3} T^{2} \)
97 \( 1 + 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.31208157689612972873729431538, −14.44930236357312692398111275609, −13.64603356891853479737645757108, −12.10068595009826496479674508400, −10.79072822068917129893808373089, −9.193496150539753633078912038086, −8.293186819103647794666715126034, −6.54660529947676692424737057589, −4.54075474162946091907136991397, −2.29672964307359539613824771035, 2.29672964307359539613824771035, 4.54075474162946091907136991397, 6.54660529947676692424737057589, 8.293186819103647794666715126034, 9.193496150539753633078912038086, 10.79072822068917129893808373089, 12.10068595009826496479674508400, 13.64603356891853479737645757108, 14.44930236357312692398111275609, 15.31208157689612972873729431538

Graph of the $Z$-function along the critical line