Properties

Label 2-20e2-5.4-c1-0-0
Degree $2$
Conductor $400$
Sign $-0.894 - 0.447i$
Analytic cond. $3.19401$
Root an. cond. $1.78718$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·3-s + 2i·7-s − 6·9-s − 11-s + 4i·13-s − 5i·17-s + 19-s − 6·21-s + 2i·23-s − 9i·27-s + 8·29-s − 10·31-s − 3i·33-s + 6i·37-s − 12·39-s + ⋯
L(s)  = 1  + 1.73i·3-s + 0.755i·7-s − 2·9-s − 0.301·11-s + 1.10i·13-s − 1.21i·17-s + 0.229·19-s − 1.30·21-s + 0.417i·23-s − 1.73i·27-s + 1.48·29-s − 1.79·31-s − 0.522i·33-s + 0.986i·37-s − 1.92·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(3.19401\)
Root analytic conductor: \(1.78718\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.262733 + 1.11295i\)
\(L(\frac12)\) \(\approx\) \(0.262733 + 1.11295i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 3iT - 3T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + T + 11T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 + 5iT - 17T^{2} \)
19 \( 1 - T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 - 8T + 29T^{2} \)
31 \( 1 + 10T + 31T^{2} \)
37 \( 1 - 6iT - 37T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 4iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + iT - 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 - 3iT - 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 13iT - 83T^{2} \)
89 \( 1 - 9T + 89T^{2} \)
97 \( 1 - 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49872412557514933520958907730, −10.69825059377453912838744929628, −9.669487069599298121277040433615, −9.229689823562002455895683396539, −8.361311322866435477509894911609, −6.87854938788815571911988126649, −5.50901059185254097494787571248, −4.86836874346180885770841587027, −3.77178671360293152835645872175, −2.59587241429448041749976204684, 0.75402159991910623317391656143, 2.16011893007561993304510332556, 3.56636821323802014617499659948, 5.33768917294660560120686567234, 6.33003125406223115386590034977, 7.19887754643194255047378783871, 7.939961448700414459634292619666, 8.635798442302891806468299240118, 10.21040167473816967659040112772, 10.94222156935275510192231394945

Graph of the $Z$-function along the critical line