L(s) = 1 | + 3i·3-s + 2i·7-s − 6·9-s − 11-s + 4i·13-s − 5i·17-s + 19-s − 6·21-s + 2i·23-s − 9i·27-s + 8·29-s − 10·31-s − 3i·33-s + 6i·37-s − 12·39-s + ⋯ |
L(s) = 1 | + 1.73i·3-s + 0.755i·7-s − 2·9-s − 0.301·11-s + 1.10i·13-s − 1.21i·17-s + 0.229·19-s − 1.30·21-s + 0.417i·23-s − 1.73i·27-s + 1.48·29-s − 1.79·31-s − 0.522i·33-s + 0.986i·37-s − 1.92·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
≈ |
0.262733+1.11295i |
L(21) |
≈ |
0.262733+1.11295i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−3iT−3T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+T+11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1+5iT−17T2 |
| 19 | 1−T+19T2 |
| 23 | 1−2iT−23T2 |
| 29 | 1−8T+29T2 |
| 31 | 1+10T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+3T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1+iT−67T2 |
| 71 | 1−12T+71T2 |
| 73 | 1−3iT−73T2 |
| 79 | 1−6T+79T2 |
| 83 | 1−13iT−83T2 |
| 89 | 1−9T+89T2 |
| 97 | 1−14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49872412557514933520958907730, −10.69825059377453912838744929628, −9.669487069599298121277040433615, −9.229689823562002455895683396539, −8.361311322866435477509894911609, −6.87854938788815571911988126649, −5.50901059185254097494787571248, −4.86836874346180885770841587027, −3.77178671360293152835645872175, −2.59587241429448041749976204684,
0.75402159991910623317391656143, 2.16011893007561993304510332556, 3.56636821323802014617499659948, 5.33768917294660560120686567234, 6.33003125406223115386590034977, 7.19887754643194255047378783871, 7.939961448700414459634292619666, 8.635798442302891806468299240118, 10.21040167473816967659040112772, 10.94222156935275510192231394945