L(s) = 1 | + (−0.0350 − 0.0481i)3-s + (−0.243 − 2.22i)5-s + 1.71i·7-s + (0.925 − 2.84i)9-s + (−0.573 − 1.76i)11-s + (0.533 + 0.173i)13-s + (−0.0985 + 0.0895i)15-s + (2.29 − 3.15i)17-s + (−4.69 − 3.40i)19-s + (0.0827 − 0.0601i)21-s + (6.95 − 2.25i)23-s + (−4.88 + 1.08i)25-s + (−0.339 + 0.110i)27-s + (2.13 − 1.55i)29-s + (−1.56 − 1.13i)31-s + ⋯ |
L(s) = 1 | + (−0.0202 − 0.0278i)3-s + (−0.108 − 0.994i)5-s + 0.648i·7-s + (0.308 − 0.949i)9-s + (−0.172 − 0.532i)11-s + (0.148 + 0.0481i)13-s + (−0.0254 + 0.0231i)15-s + (0.556 − 0.766i)17-s + (−1.07 − 0.782i)19-s + (0.0180 − 0.0131i)21-s + (1.45 − 0.471i)23-s + (−0.976 + 0.216i)25-s + (−0.0653 + 0.0212i)27-s + (0.396 − 0.288i)29-s + (−0.280 − 0.203i)31-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.277+0.960i)Λ(2−s)
Λ(s)=(=(400s/2ΓC(s+1/2)L(s)(0.277+0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.277+0.960i
|
Analytic conductor: |
3.19401 |
Root analytic conductor: |
1.78718 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :1/2), 0.277+0.960i)
|
Particular Values
L(1) |
≈ |
1.01369−0.762288i |
L(21) |
≈ |
1.01369−0.762288i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.243+2.22i)T |
good | 3 | 1+(0.0350+0.0481i)T+(−0.927+2.85i)T2 |
| 7 | 1−1.71iT−7T2 |
| 11 | 1+(0.573+1.76i)T+(−8.89+6.46i)T2 |
| 13 | 1+(−0.533−0.173i)T+(10.5+7.64i)T2 |
| 17 | 1+(−2.29+3.15i)T+(−5.25−16.1i)T2 |
| 19 | 1+(4.69+3.40i)T+(5.87+18.0i)T2 |
| 23 | 1+(−6.95+2.25i)T+(18.6−13.5i)T2 |
| 29 | 1+(−2.13+1.55i)T+(8.96−27.5i)T2 |
| 31 | 1+(1.56+1.13i)T+(9.57+29.4i)T2 |
| 37 | 1+(−0.725−0.235i)T+(29.9+21.7i)T2 |
| 41 | 1+(3.00−9.25i)T+(−33.1−24.0i)T2 |
| 43 | 1+9.68iT−43T2 |
| 47 | 1+(−6.11−8.42i)T+(−14.5+44.6i)T2 |
| 53 | 1+(−0.654−0.900i)T+(−16.3+50.4i)T2 |
| 59 | 1+(−1.56+4.81i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−4.18−12.8i)T+(−49.3+35.8i)T2 |
| 67 | 1+(0.733−1.01i)T+(−20.7−63.7i)T2 |
| 71 | 1+(10.8−7.91i)T+(21.9−67.5i)T2 |
| 73 | 1+(3.88−1.26i)T+(59.0−42.9i)T2 |
| 79 | 1+(5.25−3.81i)T+(24.4−75.1i)T2 |
| 83 | 1+(0.536−0.738i)T+(−25.6−78.9i)T2 |
| 89 | 1+(1.61+4.97i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−8.54−11.7i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29046468864710405887082976307, −10.05746227182764487996910221565, −8.920495841606337698976053128871, −8.753183490240656630659839295270, −7.35544729636807461038544397349, −6.24075364652821014609966711322, −5.24414941200462198029986453941, −4.20838973725144079613350811569, −2.78059611543843484039724790666, −0.888189619125443349592009144819,
1.91240792561667663957398570312, 3.38224067593738820637766392539, 4.47804220377239275462041105104, 5.76618248390494914030577634694, 6.97469158315510959053635772195, 7.55508523254381904472272384624, 8.578850358210343406171883612569, 10.05493452682998733994648874932, 10.50964311990614001241461335567, 11.15782624250177507613279662292