Properties

Label 2-20e2-1.1-c3-0-4
Degree $2$
Conductor $400$
Sign $1$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 26·7-s − 26·9-s − 45·11-s + 44·13-s + 117·17-s + 91·19-s + 26·21-s + 18·23-s + 53·27-s + 144·29-s − 26·31-s + 45·33-s − 214·37-s − 44·39-s − 459·41-s + 460·43-s + 468·47-s + 333·49-s − 117·51-s + 558·53-s − 91·57-s + 72·59-s − 118·61-s + 676·63-s − 251·67-s − 18·69-s + ⋯
L(s)  = 1  − 0.192·3-s − 1.40·7-s − 0.962·9-s − 1.23·11-s + 0.938·13-s + 1.66·17-s + 1.09·19-s + 0.270·21-s + 0.163·23-s + 0.377·27-s + 0.922·29-s − 0.150·31-s + 0.237·33-s − 0.950·37-s − 0.180·39-s − 1.74·41-s + 1.63·43-s + 1.45·47-s + 0.970·49-s − 0.321·51-s + 1.44·53-s − 0.211·57-s + 0.158·59-s − 0.247·61-s + 1.35·63-s − 0.457·67-s − 0.0314·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.205452861\)
\(L(\frac12)\) \(\approx\) \(1.205452861\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + T + p^{3} T^{2} \)
7 \( 1 + 26 T + p^{3} T^{2} \)
11 \( 1 + 45 T + p^{3} T^{2} \)
13 \( 1 - 44 T + p^{3} T^{2} \)
17 \( 1 - 117 T + p^{3} T^{2} \)
19 \( 1 - 91 T + p^{3} T^{2} \)
23 \( 1 - 18 T + p^{3} T^{2} \)
29 \( 1 - 144 T + p^{3} T^{2} \)
31 \( 1 + 26 T + p^{3} T^{2} \)
37 \( 1 + 214 T + p^{3} T^{2} \)
41 \( 1 + 459 T + p^{3} T^{2} \)
43 \( 1 - 460 T + p^{3} T^{2} \)
47 \( 1 - 468 T + p^{3} T^{2} \)
53 \( 1 - 558 T + p^{3} T^{2} \)
59 \( 1 - 72 T + p^{3} T^{2} \)
61 \( 1 + 118 T + p^{3} T^{2} \)
67 \( 1 + 251 T + p^{3} T^{2} \)
71 \( 1 + 108 T + p^{3} T^{2} \)
73 \( 1 - 299 T + p^{3} T^{2} \)
79 \( 1 - 898 T + p^{3} T^{2} \)
83 \( 1 + 927 T + p^{3} T^{2} \)
89 \( 1 - 351 T + p^{3} T^{2} \)
97 \( 1 - 386 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66222305581732317797491050676, −10.08665060484949798492308686817, −9.058462953622159937205941410219, −8.100774325401966563103217330172, −7.06472333355930260135293296809, −5.87965745953089203269089337582, −5.36091428648694381763533521097, −3.50693435780534881528933857626, −2.84020271325597463650178054580, −0.70634813288964357001921596267, 0.70634813288964357001921596267, 2.84020271325597463650178054580, 3.50693435780534881528933857626, 5.36091428648694381763533521097, 5.87965745953089203269089337582, 7.06472333355930260135293296809, 8.100774325401966563103217330172, 9.058462953622159937205941410219, 10.08665060484949798492308686817, 10.66222305581732317797491050676

Graph of the $Z$-function along the critical line