L(s) = 1 | + 7·3-s + 6·7-s + 22·9-s + 43·11-s + 28·13-s − 91·17-s + 35·19-s + 42·21-s + 162·23-s − 35·27-s + 160·29-s − 42·31-s + 301·33-s + 314·37-s + 196·39-s − 203·41-s + 92·43-s + 196·47-s − 307·49-s − 637·51-s − 82·53-s + 245·57-s + 280·59-s − 518·61-s + 132·63-s + 141·67-s + 1.13e3·69-s + ⋯ |
L(s) = 1 | + 1.34·3-s + 0.323·7-s + 0.814·9-s + 1.17·11-s + 0.597·13-s − 1.29·17-s + 0.422·19-s + 0.436·21-s + 1.46·23-s − 0.249·27-s + 1.02·29-s − 0.243·31-s + 1.58·33-s + 1.39·37-s + 0.804·39-s − 0.773·41-s + 0.326·43-s + 0.608·47-s − 0.895·49-s − 1.74·51-s − 0.212·53-s + 0.569·57-s + 0.617·59-s − 1.08·61-s + 0.263·63-s + 0.257·67-s + 1.97·69-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.425762620 |
L(21) |
≈ |
3.425762620 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−7T+p3T2 |
| 7 | 1−6T+p3T2 |
| 11 | 1−43T+p3T2 |
| 13 | 1−28T+p3T2 |
| 17 | 1+91T+p3T2 |
| 19 | 1−35T+p3T2 |
| 23 | 1−162T+p3T2 |
| 29 | 1−160T+p3T2 |
| 31 | 1+42T+p3T2 |
| 37 | 1−314T+p3T2 |
| 41 | 1+203T+p3T2 |
| 43 | 1−92T+p3T2 |
| 47 | 1−196T+p3T2 |
| 53 | 1+82T+p3T2 |
| 59 | 1−280T+p3T2 |
| 61 | 1+518T+p3T2 |
| 67 | 1−141T+p3T2 |
| 71 | 1+412T+p3T2 |
| 73 | 1−763T+p3T2 |
| 79 | 1+510T+p3T2 |
| 83 | 1−777T+p3T2 |
| 89 | 1+945T+p3T2 |
| 97 | 1+1246T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92081425850380038148080963003, −9.580792465687967311626525223190, −8.937294796964111206152927306488, −8.337588735072994521484418993779, −7.22555639822996190597255508028, −6.29697977567539301089455223173, −4.70001234491495502018202021736, −3.68542305177136683026914559285, −2.61052767868810440919122369239, −1.29658064996042049535564465120,
1.29658064996042049535564465120, 2.61052767868810440919122369239, 3.68542305177136683026914559285, 4.70001234491495502018202021736, 6.29697977567539301089455223173, 7.22555639822996190597255508028, 8.337588735072994521484418993779, 8.937294796964111206152927306488, 9.580792465687967311626525223190, 10.92081425850380038148080963003