Properties

Label 2-20e2-1.1-c3-0-11
Degree $2$
Conductor $400$
Sign $1$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·3-s + 6·7-s + 22·9-s + 43·11-s + 28·13-s − 91·17-s + 35·19-s + 42·21-s + 162·23-s − 35·27-s + 160·29-s − 42·31-s + 301·33-s + 314·37-s + 196·39-s − 203·41-s + 92·43-s + 196·47-s − 307·49-s − 637·51-s − 82·53-s + 245·57-s + 280·59-s − 518·61-s + 132·63-s + 141·67-s + 1.13e3·69-s + ⋯
L(s)  = 1  + 1.34·3-s + 0.323·7-s + 0.814·9-s + 1.17·11-s + 0.597·13-s − 1.29·17-s + 0.422·19-s + 0.436·21-s + 1.46·23-s − 0.249·27-s + 1.02·29-s − 0.243·31-s + 1.58·33-s + 1.39·37-s + 0.804·39-s − 0.773·41-s + 0.326·43-s + 0.608·47-s − 0.895·49-s − 1.74·51-s − 0.212·53-s + 0.569·57-s + 0.617·59-s − 1.08·61-s + 0.263·63-s + 0.257·67-s + 1.97·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.425762620\)
\(L(\frac12)\) \(\approx\) \(3.425762620\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 - 6 T + p^{3} T^{2} \)
11 \( 1 - 43 T + p^{3} T^{2} \)
13 \( 1 - 28 T + p^{3} T^{2} \)
17 \( 1 + 91 T + p^{3} T^{2} \)
19 \( 1 - 35 T + p^{3} T^{2} \)
23 \( 1 - 162 T + p^{3} T^{2} \)
29 \( 1 - 160 T + p^{3} T^{2} \)
31 \( 1 + 42 T + p^{3} T^{2} \)
37 \( 1 - 314 T + p^{3} T^{2} \)
41 \( 1 + 203 T + p^{3} T^{2} \)
43 \( 1 - 92 T + p^{3} T^{2} \)
47 \( 1 - 196 T + p^{3} T^{2} \)
53 \( 1 + 82 T + p^{3} T^{2} \)
59 \( 1 - 280 T + p^{3} T^{2} \)
61 \( 1 + 518 T + p^{3} T^{2} \)
67 \( 1 - 141 T + p^{3} T^{2} \)
71 \( 1 + 412 T + p^{3} T^{2} \)
73 \( 1 - 763 T + p^{3} T^{2} \)
79 \( 1 + 510 T + p^{3} T^{2} \)
83 \( 1 - 777 T + p^{3} T^{2} \)
89 \( 1 + 945 T + p^{3} T^{2} \)
97 \( 1 + 1246 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92081425850380038148080963003, −9.580792465687967311626525223190, −8.937294796964111206152927306488, −8.337588735072994521484418993779, −7.22555639822996190597255508028, −6.29697977567539301089455223173, −4.70001234491495502018202021736, −3.68542305177136683026914559285, −2.61052767868810440919122369239, −1.29658064996042049535564465120, 1.29658064996042049535564465120, 2.61052767868810440919122369239, 3.68542305177136683026914559285, 4.70001234491495502018202021736, 6.29697977567539301089455223173, 7.22555639822996190597255508028, 8.337588735072994521484418993779, 8.937294796964111206152927306488, 9.580792465687967311626525223190, 10.92081425850380038148080963003

Graph of the $Z$-function along the critical line