L(s) = 1 | − 1.17i·3-s − 1.90i·7-s + 1.61·9-s + 3.80·11-s − 1.23i·13-s − 2i·17-s + 6.15·19-s − 2.23·21-s − 1.90i·23-s − 5.42i·27-s − 3.61·29-s − 0.898·31-s − 4.47i·33-s − 9.70i·37-s − 1.45·39-s + ⋯ |
L(s) = 1 | − 0.678i·3-s − 0.718i·7-s + 0.539·9-s + 1.14·11-s − 0.342i·13-s − 0.485i·17-s + 1.41·19-s − 0.487·21-s − 0.396i·23-s − 1.04i·27-s − 0.671·29-s − 0.161·31-s − 0.778i·33-s − 1.59i·37-s − 0.232·39-s + ⋯ |
Λ(s)=(=(4000s/2ΓC(s)L(s)iΛ(2−s)
Λ(s)=(=(4000s/2ΓC(s+1/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
4000
= 25⋅53
|
Sign: |
i
|
Analytic conductor: |
31.9401 |
Root analytic conductor: |
5.65156 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4000(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4000, ( :1/2), i)
|
Particular Values
L(1) |
≈ |
2.298643876 |
L(21) |
≈ |
2.298643876 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+1.17iT−3T2 |
| 7 | 1+1.90iT−7T2 |
| 11 | 1−3.80T+11T2 |
| 13 | 1+1.23iT−13T2 |
| 17 | 1+2iT−17T2 |
| 19 | 1−6.15T+19T2 |
| 23 | 1+1.90iT−23T2 |
| 29 | 1+3.61T+29T2 |
| 31 | 1+0.898T+31T2 |
| 37 | 1+9.70iT−37T2 |
| 41 | 1−0.854T+41T2 |
| 43 | 1−11.1iT−43T2 |
| 47 | 1−9.68iT−47T2 |
| 53 | 1−4iT−53T2 |
| 59 | 1−3.80T+59T2 |
| 61 | 1−1.38T+61T2 |
| 67 | 1−1.45iT−67T2 |
| 71 | 1−9.06T+71T2 |
| 73 | 1−6.76iT−73T2 |
| 79 | 1−12.8T+79T2 |
| 83 | 1+4.25iT−83T2 |
| 89 | 1−3.09T+89T2 |
| 97 | 1+14.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.953462630937507952811184385287, −7.50517379016886775508704672642, −6.92082622386750915773764926383, −6.23193320396536503944740675729, −5.34344319264267434810573642829, −4.33539925988078962487446680140, −3.72758492168214222430167203896, −2.65915326158009069955581425347, −1.45298808475920547287780713387, −0.78590897549567538238694366799,
1.21915368975139066175758718452, 2.17421026116636202656925130299, 3.55433104084113324025209976486, 3.83197935541718894506519066525, 4.98722792959635078350446134896, 5.46214376746942617035574346371, 6.49341484909456474117234029969, 7.06598791335246259794714975198, 7.964515557787612046999658105965, 8.881942718008516126645703889744