Properties

Label 2-4001-1.1-c1-0-224
Degree $2$
Conductor $4001$
Sign $1$
Analytic cond. $31.9481$
Root an. cond. $5.65226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.61·2-s + 2.84·3-s + 4.83·4-s + 0.542·5-s − 7.44·6-s + 4.00·7-s − 7.41·8-s + 5.11·9-s − 1.41·10-s + 4.26·11-s + 13.7·12-s + 5.82·13-s − 10.4·14-s + 1.54·15-s + 9.71·16-s − 4.23·17-s − 13.3·18-s + 6.94·19-s + 2.62·20-s + 11.4·21-s − 11.1·22-s − 5.99·23-s − 21.1·24-s − 4.70·25-s − 15.2·26-s + 6.01·27-s + 19.3·28-s + ⋯
L(s)  = 1  − 1.84·2-s + 1.64·3-s + 2.41·4-s + 0.242·5-s − 3.04·6-s + 1.51·7-s − 2.62·8-s + 1.70·9-s − 0.448·10-s + 1.28·11-s + 3.97·12-s + 1.61·13-s − 2.79·14-s + 0.398·15-s + 2.42·16-s − 1.02·17-s − 3.15·18-s + 1.59·19-s + 0.586·20-s + 2.48·21-s − 2.37·22-s − 1.25·23-s − 4.31·24-s − 0.941·25-s − 2.98·26-s + 1.15·27-s + 3.66·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4001\)
Sign: $1$
Analytic conductor: \(31.9481\)
Root analytic conductor: \(5.65226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.357857985\)
\(L(\frac12)\) \(\approx\) \(2.357857985\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4001 \( 1+O(T) \)
good2 \( 1 + 2.61T + 2T^{2} \)
3 \( 1 - 2.84T + 3T^{2} \)
5 \( 1 - 0.542T + 5T^{2} \)
7 \( 1 - 4.00T + 7T^{2} \)
11 \( 1 - 4.26T + 11T^{2} \)
13 \( 1 - 5.82T + 13T^{2} \)
17 \( 1 + 4.23T + 17T^{2} \)
19 \( 1 - 6.94T + 19T^{2} \)
23 \( 1 + 5.99T + 23T^{2} \)
29 \( 1 + 3.54T + 29T^{2} \)
31 \( 1 - 9.01T + 31T^{2} \)
37 \( 1 + 5.38T + 37T^{2} \)
41 \( 1 - 5.31T + 41T^{2} \)
43 \( 1 - 2.25T + 43T^{2} \)
47 \( 1 - 3.58T + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 + 7.82T + 59T^{2} \)
61 \( 1 - 1.46T + 61T^{2} \)
67 \( 1 + 4.09T + 67T^{2} \)
71 \( 1 - 13.6T + 71T^{2} \)
73 \( 1 + 9.91T + 73T^{2} \)
79 \( 1 + 4.77T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 - 17.5T + 89T^{2} \)
97 \( 1 + 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.486660183358852980999576906244, −7.978398572752588591225072055759, −7.58368016532377087964816709308, −6.63480236728174877918278112908, −5.88751309773272995410400757885, −4.33183739836957037295187293740, −3.56207373707181882319408347555, −2.48149903705243565732996765624, −1.57954188456051847488092121893, −1.33394055734303340366189478329, 1.33394055734303340366189478329, 1.57954188456051847488092121893, 2.48149903705243565732996765624, 3.56207373707181882319408347555, 4.33183739836957037295187293740, 5.88751309773272995410400757885, 6.63480236728174877918278112908, 7.58368016532377087964816709308, 7.978398572752588591225072055759, 8.486660183358852980999576906244

Graph of the $Z$-function along the critical line