Properties

Label 2-4001-1.1-c1-0-76
Degree $2$
Conductor $4001$
Sign $1$
Analytic cond. $31.9481$
Root an. cond. $5.65226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.77·2-s − 0.970·3-s + 5.72·4-s + 0.973·5-s + 2.69·6-s + 0.392·7-s − 10.3·8-s − 2.05·9-s − 2.70·10-s − 4.34·11-s − 5.55·12-s + 2.35·13-s − 1.09·14-s − 0.944·15-s + 17.3·16-s + 6.89·17-s + 5.72·18-s + 6.69·19-s + 5.57·20-s − 0.380·21-s + 12.0·22-s − 2.69·23-s + 10.0·24-s − 4.05·25-s − 6.54·26-s + 4.90·27-s + 2.24·28-s + ⋯
L(s)  = 1  − 1.96·2-s − 0.560·3-s + 2.86·4-s + 0.435·5-s + 1.10·6-s + 0.148·7-s − 3.66·8-s − 0.686·9-s − 0.855·10-s − 1.31·11-s − 1.60·12-s + 0.653·13-s − 0.291·14-s − 0.243·15-s + 4.33·16-s + 1.67·17-s + 1.34·18-s + 1.53·19-s + 1.24·20-s − 0.0831·21-s + 2.57·22-s − 0.562·23-s + 2.05·24-s − 0.810·25-s − 1.28·26-s + 0.944·27-s + 0.424·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4001\)
Sign: $1$
Analytic conductor: \(31.9481\)
Root analytic conductor: \(5.65226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5864513727\)
\(L(\frac12)\) \(\approx\) \(0.5864513727\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4001 \( 1+O(T) \)
good2 \( 1 + 2.77T + 2T^{2} \)
3 \( 1 + 0.970T + 3T^{2} \)
5 \( 1 - 0.973T + 5T^{2} \)
7 \( 1 - 0.392T + 7T^{2} \)
11 \( 1 + 4.34T + 11T^{2} \)
13 \( 1 - 2.35T + 13T^{2} \)
17 \( 1 - 6.89T + 17T^{2} \)
19 \( 1 - 6.69T + 19T^{2} \)
23 \( 1 + 2.69T + 23T^{2} \)
29 \( 1 - 0.233T + 29T^{2} \)
31 \( 1 - 9.20T + 31T^{2} \)
37 \( 1 + 6.23T + 37T^{2} \)
41 \( 1 - 11.9T + 41T^{2} \)
43 \( 1 - 5.31T + 43T^{2} \)
47 \( 1 + 5.36T + 47T^{2} \)
53 \( 1 + 5.62T + 53T^{2} \)
59 \( 1 + 7.14T + 59T^{2} \)
61 \( 1 - 9.12T + 61T^{2} \)
67 \( 1 + 2.47T + 67T^{2} \)
71 \( 1 + 7.84T + 71T^{2} \)
73 \( 1 + 12.2T + 73T^{2} \)
79 \( 1 + 9.57T + 79T^{2} \)
83 \( 1 - 13.8T + 83T^{2} \)
89 \( 1 + 9.52T + 89T^{2} \)
97 \( 1 - 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.378830790007563084331380466124, −7.79729317935365697892393236305, −7.45542656715980417766322511427, −6.17304086164720656106587303627, −5.89701997861666301690386343726, −5.16478186231926115966986720912, −3.24770961926772566677677465416, −2.70104075061646875415535455990, −1.51751194863065072550666476652, −0.63145340172050522994436707051, 0.63145340172050522994436707051, 1.51751194863065072550666476652, 2.70104075061646875415535455990, 3.24770961926772566677677465416, 5.16478186231926115966986720912, 5.89701997861666301690386343726, 6.17304086164720656106587303627, 7.45542656715980417766322511427, 7.79729317935365697892393236305, 8.378830790007563084331380466124

Graph of the $Z$-function along the critical line