Properties

Label 2-4032-1.1-c1-0-36
Degree $2$
Conductor $4032$
Sign $-1$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46·5-s − 7-s + 5.46·11-s − 2·13-s − 7.46·17-s + 6.92·19-s − 5.46·23-s + 6.99·25-s + 8.92·29-s + 2.92·31-s + 3.46·35-s + 2·37-s − 4.53·41-s + 8·43-s + 2.92·47-s + 49-s − 2·53-s − 18.9·55-s − 14.9·59-s − 4.92·61-s + 6.92·65-s − 10.9·67-s − 2.53·71-s − 0.928·73-s − 5.46·77-s + 2.92·79-s − 4·83-s + ⋯
L(s)  = 1  − 1.54·5-s − 0.377·7-s + 1.64·11-s − 0.554·13-s − 1.81·17-s + 1.58·19-s − 1.13·23-s + 1.39·25-s + 1.65·29-s + 0.525·31-s + 0.585·35-s + 0.328·37-s − 0.708·41-s + 1.21·43-s + 0.427·47-s + 0.142·49-s − 0.274·53-s − 2.55·55-s − 1.94·59-s − 0.630·61-s + 0.859·65-s − 1.33·67-s − 0.300·71-s − 0.108·73-s − 0.622·77-s + 0.329·79-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 3.46T + 5T^{2} \)
11 \( 1 - 5.46T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 7.46T + 17T^{2} \)
19 \( 1 - 6.92T + 19T^{2} \)
23 \( 1 + 5.46T + 23T^{2} \)
29 \( 1 - 8.92T + 29T^{2} \)
31 \( 1 - 2.92T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 4.53T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 - 2.92T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 + 4.92T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 2.53T + 71T^{2} \)
73 \( 1 + 0.928T + 73T^{2} \)
79 \( 1 - 2.92T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 3.46T + 89T^{2} \)
97 \( 1 - 4.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.992846356885766983001991000556, −7.37136082751707015251643770465, −6.67982625313640665743777995138, −6.09965788745713556658947745090, −4.67967400312300377332191244689, −4.30895469453670692609610459919, −3.53038146336328772307829236318, −2.66783289303193059459661940737, −1.21568558898854458089765081722, 0, 1.21568558898854458089765081722, 2.66783289303193059459661940737, 3.53038146336328772307829236318, 4.30895469453670692609610459919, 4.67967400312300377332191244689, 6.09965788745713556658947745090, 6.67982625313640665743777995138, 7.37136082751707015251643770465, 7.992846356885766983001991000556

Graph of the $Z$-function along the critical line