Properties

Label 2-4032-1.1-c1-0-11
Degree $2$
Conductor $4032$
Sign $1$
Analytic cond. $32.1956$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 2·11-s + 2·13-s − 4·17-s + 4·19-s + 6·23-s − 5·25-s − 2·29-s + 6·37-s − 8·41-s + 8·43-s + 4·47-s + 49-s − 6·53-s + 14·61-s − 4·67-s + 2·71-s − 2·73-s + 2·77-s + 4·79-s + 12·83-s − 2·91-s + 6·97-s + 12·101-s − 8·103-s + 6·107-s + 18·109-s + ⋯
L(s)  = 1  − 0.377·7-s − 0.603·11-s + 0.554·13-s − 0.970·17-s + 0.917·19-s + 1.25·23-s − 25-s − 0.371·29-s + 0.986·37-s − 1.24·41-s + 1.21·43-s + 0.583·47-s + 1/7·49-s − 0.824·53-s + 1.79·61-s − 0.488·67-s + 0.237·71-s − 0.234·73-s + 0.227·77-s + 0.450·79-s + 1.31·83-s − 0.209·91-s + 0.609·97-s + 1.19·101-s − 0.788·103-s + 0.580·107-s + 1.72·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(32.1956\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4032,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.628716762\)
\(L(\frac12)\) \(\approx\) \(1.628716762\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.461724669872786901402316813867, −7.66713573880685231641557306283, −7.02626250778021512242656918408, −6.21787449399701061816318774055, −5.50172231446915643145331091937, −4.71077514128705501364254964394, −3.77987640746394375541111582265, −2.97784119788221167637879623474, −2.03842897638405211015926221067, −0.72220178526617033144485089127, 0.72220178526617033144485089127, 2.03842897638405211015926221067, 2.97784119788221167637879623474, 3.77987640746394375541111582265, 4.71077514128705501364254964394, 5.50172231446915643145331091937, 6.21787449399701061816318774055, 7.02626250778021512242656918408, 7.66713573880685231641557306283, 8.461724669872786901402316813867

Graph of the $Z$-function along the critical line