Properties

Label 2-4032-48.35-c1-0-7
Degree 22
Conductor 40324032
Sign 0.7170.696i-0.717 - 0.696i
Analytic cond. 32.195632.1956
Root an. cond. 5.674125.67412
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.65 + 1.65i)5-s − 7-s + (−0.993 + 0.993i)11-s + (2.62 + 2.62i)13-s + 2.77i·17-s + (−1.56 + 1.56i)19-s − 1.05i·23-s + 0.491i·25-s + (−3.47 + 3.47i)29-s + 1.06i·31-s + (−1.65 − 1.65i)35-s + (−0.0657 + 0.0657i)37-s − 6.31·41-s + (2.38 + 2.38i)43-s − 1.47·47-s + ⋯
L(s)  = 1  + (0.741 + 0.741i)5-s − 0.377·7-s + (−0.299 + 0.299i)11-s + (0.728 + 0.728i)13-s + 0.673i·17-s + (−0.358 + 0.358i)19-s − 0.219i·23-s + 0.0982i·25-s + (−0.645 + 0.645i)29-s + 0.190i·31-s + (−0.280 − 0.280i)35-s + (−0.0108 + 0.0108i)37-s − 0.985·41-s + (0.364 + 0.364i)43-s − 0.214·47-s + ⋯

Functional equation

Λ(s)=(4032s/2ΓC(s)L(s)=((0.7170.696i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.717 - 0.696i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(4032s/2ΓC(s+1/2)L(s)=((0.7170.696i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.717 - 0.696i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 40324032    =    263272^{6} \cdot 3^{2} \cdot 7
Sign: 0.7170.696i-0.717 - 0.696i
Analytic conductor: 32.195632.1956
Root analytic conductor: 5.674125.67412
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ4032(1583,)\chi_{4032} (1583, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 4032, ( :1/2), 0.7170.696i)(2,\ 4032,\ (\ :1/2),\ -0.717 - 0.696i)

Particular Values

L(1)L(1) \approx 1.4046743161.404674316
L(12)L(\frac12) \approx 1.4046743161.404674316
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+T 1 + T
good5 1+(1.651.65i)T+5iT2 1 + (-1.65 - 1.65i)T + 5iT^{2}
11 1+(0.9930.993i)T11iT2 1 + (0.993 - 0.993i)T - 11iT^{2}
13 1+(2.622.62i)T+13iT2 1 + (-2.62 - 2.62i)T + 13iT^{2}
17 12.77iT17T2 1 - 2.77iT - 17T^{2}
19 1+(1.561.56i)T19iT2 1 + (1.56 - 1.56i)T - 19iT^{2}
23 1+1.05iT23T2 1 + 1.05iT - 23T^{2}
29 1+(3.473.47i)T29iT2 1 + (3.47 - 3.47i)T - 29iT^{2}
31 11.06iT31T2 1 - 1.06iT - 31T^{2}
37 1+(0.06570.0657i)T37iT2 1 + (0.0657 - 0.0657i)T - 37iT^{2}
41 1+6.31T+41T2 1 + 6.31T + 41T^{2}
43 1+(2.382.38i)T+43iT2 1 + (-2.38 - 2.38i)T + 43iT^{2}
47 1+1.47T+47T2 1 + 1.47T + 47T^{2}
53 1+(7.637.63i)T+53iT2 1 + (-7.63 - 7.63i)T + 53iT^{2}
59 1+(4.154.15i)T59iT2 1 + (4.15 - 4.15i)T - 59iT^{2}
61 1+(7.78+7.78i)T+61iT2 1 + (7.78 + 7.78i)T + 61iT^{2}
67 1+(1.981.98i)T67iT2 1 + (1.98 - 1.98i)T - 67iT^{2}
71 1+13.0iT71T2 1 + 13.0iT - 71T^{2}
73 1+9.50iT73T2 1 + 9.50iT - 73T^{2}
79 19.85iT79T2 1 - 9.85iT - 79T^{2}
83 1+(1.131.13i)T+83iT2 1 + (-1.13 - 1.13i)T + 83iT^{2}
89 1+7.04T+89T2 1 + 7.04T + 89T^{2}
97 15.35T+97T2 1 - 5.35T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.847702869112784531978719333117, −7.956255658529928597910527181976, −7.13820764440150482564899379575, −6.34847438452488549620784510907, −6.06840498316618870284943607846, −5.03313296254870035107094108523, −4.05772522590265725506838375011, −3.27105020908619148892613646080, −2.30497765930989401547153806697, −1.49756696195347056290504230550, 0.38431836768571028454798239769, 1.50617121741805089086650618208, 2.58363325280024470568732950231, 3.46715483715206153871686312412, 4.42853934597530084830170912839, 5.43362085222428549493167822614, 5.70631132137435664322787825657, 6.63974439577708854312654955243, 7.44887374654742652649007259479, 8.340024727182592496724007660883

Graph of the ZZ-function along the critical line