L(s) = 1 | + (−1.65 + 1.65i)5-s − 7-s + (0.993 + 0.993i)11-s + (2.62 − 2.62i)13-s + 2.77i·17-s + (−1.56 − 1.56i)19-s − 1.05i·23-s − 0.491i·25-s + (3.47 + 3.47i)29-s − 1.06i·31-s + (1.65 − 1.65i)35-s + (−0.0657 − 0.0657i)37-s + 6.31·41-s + (2.38 − 2.38i)43-s + 1.47·47-s + ⋯ |
L(s) = 1 | + (−0.741 + 0.741i)5-s − 0.377·7-s + (0.299 + 0.299i)11-s + (0.728 − 0.728i)13-s + 0.673i·17-s + (−0.358 − 0.358i)19-s − 0.219i·23-s − 0.0982i·25-s + (0.645 + 0.645i)29-s − 0.190i·31-s + (0.280 − 0.280i)35-s + (−0.0108 − 0.0108i)37-s + 0.985·41-s + (0.364 − 0.364i)43-s + 0.214·47-s + ⋯ |
Λ(s)=(=(4032s/2ΓC(s)L(s)(−0.417−0.908i)Λ(2−s)
Λ(s)=(=(4032s/2ΓC(s+1/2)L(s)(−0.417−0.908i)Λ(1−s)
Degree: |
2 |
Conductor: |
4032
= 26⋅32⋅7
|
Sign: |
−0.417−0.908i
|
Analytic conductor: |
32.1956 |
Root analytic conductor: |
5.67412 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4032(3599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4032, ( :1/2), −0.417−0.908i)
|
Particular Values
L(1) |
≈ |
1.097697352 |
L(21) |
≈ |
1.097697352 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1+(1.65−1.65i)T−5iT2 |
| 11 | 1+(−0.993−0.993i)T+11iT2 |
| 13 | 1+(−2.62+2.62i)T−13iT2 |
| 17 | 1−2.77iT−17T2 |
| 19 | 1+(1.56+1.56i)T+19iT2 |
| 23 | 1+1.05iT−23T2 |
| 29 | 1+(−3.47−3.47i)T+29iT2 |
| 31 | 1+1.06iT−31T2 |
| 37 | 1+(0.0657+0.0657i)T+37iT2 |
| 41 | 1−6.31T+41T2 |
| 43 | 1+(−2.38+2.38i)T−43iT2 |
| 47 | 1−1.47T+47T2 |
| 53 | 1+(7.63−7.63i)T−53iT2 |
| 59 | 1+(−4.15−4.15i)T+59iT2 |
| 61 | 1+(7.78−7.78i)T−61iT2 |
| 67 | 1+(1.98+1.98i)T+67iT2 |
| 71 | 1+13.0iT−71T2 |
| 73 | 1−9.50iT−73T2 |
| 79 | 1+9.85iT−79T2 |
| 83 | 1+(1.13−1.13i)T−83iT2 |
| 89 | 1−7.04T+89T2 |
| 97 | 1−5.35T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.703677991825013504911564430843, −7.78236322160435729889830105464, −7.33038063638632771137248481569, −6.40931165747377994361529072165, −5.97296369873004281842333645455, −4.81760478539520796601869093086, −3.94863763989858136991493618883, −3.32329317624028099415861503859, −2.48334420805933749804018656527, −1.10160626949482344769297383339,
0.36835501851288102039301171742, 1.45806762928041246259225830986, 2.73118433618980860955347271339, 3.76151758725359021621303743991, 4.29660689256743173541367549963, 5.11265075424814277895089051361, 6.12231307248142144448581387870, 6.64669305287690372370869646405, 7.61855224847689593719114793847, 8.251525131939462300682962216450