L(s) = 1 | + 2.51·2-s + 4.32·4-s + 5-s − 0.514·7-s + 5.83·8-s + 2.51·10-s − 3.32·11-s − 1.32·13-s − 1.29·14-s + 6.02·16-s − 3.32·17-s − 1.32·19-s + 4.32·20-s − 8.34·22-s + 4.12·23-s + 25-s − 3.32·26-s − 2.22·28-s − 1.38·29-s + 8.73·31-s + 3.48·32-s − 8.34·34-s − 0.514·35-s + 0.292·37-s − 3.32·38-s + 5.83·40-s − 11.3·41-s + ⋯ |
L(s) = 1 | + 1.77·2-s + 2.16·4-s + 0.447·5-s − 0.194·7-s + 2.06·8-s + 0.795·10-s − 1.00·11-s − 0.366·13-s − 0.345·14-s + 1.50·16-s − 0.805·17-s − 0.303·19-s + 0.966·20-s − 1.78·22-s + 0.860·23-s + 0.200·25-s − 0.651·26-s − 0.419·28-s − 0.257·29-s + 1.56·31-s + 0.616·32-s − 1.43·34-s − 0.0869·35-s + 0.0481·37-s − 0.538·38-s + 0.922·40-s − 1.77·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.617205165\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.617205165\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 2 | \( 1 - 2.51T + 2T^{2} \) |
| 7 | \( 1 + 0.514T + 7T^{2} \) |
| 11 | \( 1 + 3.32T + 11T^{2} \) |
| 13 | \( 1 + 1.32T + 13T^{2} \) |
| 17 | \( 1 + 3.32T + 17T^{2} \) |
| 19 | \( 1 + 1.32T + 19T^{2} \) |
| 23 | \( 1 - 4.12T + 23T^{2} \) |
| 29 | \( 1 + 1.38T + 29T^{2} \) |
| 31 | \( 1 - 8.73T + 31T^{2} \) |
| 37 | \( 1 - 0.292T + 37T^{2} \) |
| 41 | \( 1 + 11.3T + 41T^{2} \) |
| 43 | \( 1 - 10.3T + 43T^{2} \) |
| 47 | \( 1 + 4.86T + 47T^{2} \) |
| 53 | \( 1 + 5.02T + 53T^{2} \) |
| 59 | \( 1 + 5.02T + 59T^{2} \) |
| 61 | \( 1 - 7.34T + 61T^{2} \) |
| 67 | \( 1 - 9.44T + 67T^{2} \) |
| 71 | \( 1 - 8.99T + 71T^{2} \) |
| 73 | \( 1 - 6.05T + 73T^{2} \) |
| 79 | \( 1 + 8.05T + 79T^{2} \) |
| 83 | \( 1 - 1.54T + 83T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + 12.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43647010305502459602123780382, −10.71476474098541103720363091295, −9.699823814832895875174538969106, −8.281294856092912784424661004141, −7.03024273615491346463579841902, −6.28996164367483920774021968805, −5.23647463857818594601923063419, −4.55802444124845438928070684110, −3.17689899663705654627478208061, −2.23768245130265216385360926189,
2.23768245130265216385360926189, 3.17689899663705654627478208061, 4.55802444124845438928070684110, 5.23647463857818594601923063419, 6.28996164367483920774021968805, 7.03024273615491346463579841902, 8.281294856092912784424661004141, 9.699823814832895875174538969106, 10.71476474098541103720363091295, 11.43647010305502459602123780382