L(s) = 1 | + (1.36 + 2.36i)2-s + (−2.73 + 4.73i)4-s + (−0.5 + 0.866i)5-s + (0.633 + 1.09i)7-s − 9.46·8-s − 2.73·10-s + (1.13 + 1.96i)11-s + (2.73 − 4.73i)13-s + (−1.73 + 3i)14-s + (−7.46 − 12.9i)16-s + 0.732·17-s − 2.46·19-s + (−2.73 − 4.73i)20-s + (−3.09 + 5.36i)22-s + (−1.73 + 3i)23-s + ⋯ |
L(s) = 1 | + (0.965 + 1.67i)2-s + (−1.36 + 2.36i)4-s + (−0.223 + 0.387i)5-s + (0.239 + 0.415i)7-s − 3.34·8-s − 0.863·10-s + (0.341 + 0.592i)11-s + (0.757 − 1.31i)13-s + (−0.462 + 0.801i)14-s + (−1.86 − 3.23i)16-s + 0.177·17-s − 0.565·19-s + (−0.610 − 1.05i)20-s + (−0.660 + 1.14i)22-s + (−0.361 + 0.625i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.984+0.173i)Λ(2−s)
Λ(s)=(=(405s/2ΓC(s+1/2)L(s)(−0.984+0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.984+0.173i
|
Analytic conductor: |
3.23394 |
Root analytic conductor: |
1.79831 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1/2), −0.984+0.173i)
|
Particular Values
L(1) |
≈ |
0.165825−1.89539i |
L(21) |
≈ |
0.165825−1.89539i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 2 | 1+(−1.36−2.36i)T+(−1+1.73i)T2 |
| 7 | 1+(−0.633−1.09i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.13−1.96i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.73+4.73i)T+(−6.5−11.2i)T2 |
| 17 | 1−0.732T+17T2 |
| 19 | 1+2.46T+19T2 |
| 23 | 1+(1.73−3i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.59−6.23i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.5+2.59i)T+(−15.5−26.8i)T2 |
| 37 | 1−0.732T+37T2 |
| 41 | 1+(1.59−2.76i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−5.09−8.83i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−2.63−4.56i)T+(−23.5+40.7i)T2 |
| 53 | 1−3.26T+53T2 |
| 59 | 1+(−5.86+10.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2+3.46i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.73+3i)T+(−33.5−58.0i)T2 |
| 71 | 1+0.267T+71T2 |
| 73 | 1−9.66T+73T2 |
| 79 | 1+(4.26+7.39i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−4.09−7.09i)T+(−41.5+71.8i)T2 |
| 89 | 1+5.19T+89T2 |
| 97 | 1+(3.83+6.63i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.18207642515705751637940758412, −11.02205020827738593807648067126, −9.603806174748282933469960518479, −8.428848140622265578115970261404, −7.899804467210816922651734806742, −6.88765769128456567961206306058, −6.04479816052292695329768466713, −5.19779654704415700788058986464, −4.10165376231819603599411643757, −3.04367738719417493586361704995,
1.01053617757719889937601477821, 2.35090648063785735326048693140, 3.90719652756023183783281195154, 4.28105763848237623438696308070, 5.57693200434407207387072893433, 6.59904456475014027428731226369, 8.488341614347387466734063390495, 9.180599278617522443174533777525, 10.30567940076423927479461632115, 10.94902446248956599800103503468