L(s) = 1 | + (0.456 + 0.456i)2-s − 3.58i·4-s + (3.92 − 3.10i)5-s + (−4.20 − 4.20i)7-s + (3.46 − 3.46i)8-s + (3.20 + 0.373i)10-s − 0.0953·11-s + (2.41 − 2.41i)13-s − 3.84i·14-s − 11.1·16-s + (−14.4 − 14.4i)17-s + 25.7i·19-s + (−11.1 − 14.0i)20-s + (−0.0435 − 0.0435i)22-s + (−3.36 + 3.36i)23-s + ⋯ |
L(s) = 1 | + (0.228 + 0.228i)2-s − 0.895i·4-s + (0.784 − 0.620i)5-s + (−0.601 − 0.601i)7-s + (0.433 − 0.433i)8-s + (0.320 + 0.0373i)10-s − 0.00866·11-s + (0.185 − 0.185i)13-s − 0.274i·14-s − 0.697·16-s + (−0.847 − 0.847i)17-s + 1.35i·19-s + (−0.555 − 0.702i)20-s + (−0.00198 − 0.00198i)22-s + (−0.146 + 0.146i)23-s + ⋯ |
Λ(s)=(=(405s/2ΓC(s)L(s)(−0.340+0.940i)Λ(3−s)
Λ(s)=(=(405s/2ΓC(s+1)L(s)(−0.340+0.940i)Λ(1−s)
Degree: |
2 |
Conductor: |
405
= 34⋅5
|
Sign: |
−0.340+0.940i
|
Analytic conductor: |
11.0354 |
Root analytic conductor: |
3.32196 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ405(82,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 405, ( :1), −0.340+0.940i)
|
Particular Values
L(23) |
≈ |
1.00214−1.42931i |
L(21) |
≈ |
1.00214−1.42931i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−3.92+3.10i)T |
good | 2 | 1+(−0.456−0.456i)T+4iT2 |
| 7 | 1+(4.20+4.20i)T+49iT2 |
| 11 | 1+0.0953T+121T2 |
| 13 | 1+(−2.41+2.41i)T−169iT2 |
| 17 | 1+(14.4+14.4i)T+289iT2 |
| 19 | 1−25.7iT−361T2 |
| 23 | 1+(3.36−3.36i)T−529iT2 |
| 29 | 1+41.1iT−841T2 |
| 31 | 1+37T+961T2 |
| 37 | 1+(−50.6−50.6i)T+1.36e3iT2 |
| 41 | 1+2.26T+1.68e3T2 |
| 43 | 1+(−24.7+24.7i)T−1.84e3iT2 |
| 47 | 1+(−16.3−16.3i)T+2.20e3iT2 |
| 53 | 1+(−49.0+49.0i)T−2.80e3iT2 |
| 59 | 1+100.iT−3.48e3T2 |
| 61 | 1+55.4T+3.72e3T2 |
| 67 | 1+(−37.3−37.3i)T+4.48e3iT2 |
| 71 | 1−39.8T+5.04e3T2 |
| 73 | 1+(−39.3+39.3i)T−5.32e3iT2 |
| 79 | 1−60.0iT−6.24e3T2 |
| 83 | 1+(−77.3+77.3i)T−6.88e3iT2 |
| 89 | 1−51.6iT−7.92e3T2 |
| 97 | 1+(−70.7−70.7i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52925412514265697254272906517, −9.816132543176288894807475987421, −9.253142087847148406567507224522, −7.935335237246986844160981725367, −6.67653685290306673647801642586, −5.98152699382803798622707358581, −5.04507769173012803947475836641, −3.95017223044317728241588928044, −2.10071044125648832011973784700, −0.68229501368343039056926341271,
2.17385623250824332003935417820, 3.02252416303470129770793467437, 4.24323431719983969590345650831, 5.63229801592760774581258984864, 6.62911246631826056232888350331, 7.44438618448966483719484649689, 8.893330411875019482883604764598, 9.234359997660244938738973949154, 10.72629187052173667882515333658, 11.14963849471781800170635604373