L(s) = 1 | + (0.5 + 0.133i)2-s + (−3.23 − 1.86i)4-s + (−2.5 − 4.33i)5-s + (2.09 + 0.562i)7-s + (−2.83 − 2.83i)8-s + (−0.669 − 2.5i)10-s + (2.09 + 3.63i)11-s + (−14.6 + 3.93i)13-s + (0.973 + 0.562i)14-s + (6.42 + 11.1i)16-s + (−6.70 + 6.70i)17-s − 0.588i·19-s + 18.6i·20-s + (0.562 + 2.09i)22-s + (28.4 − 7.63i)23-s + ⋯ |
L(s) = 1 | + (0.250 + 0.0669i)2-s + (−0.808 − 0.466i)4-s + (−0.5 − 0.866i)5-s + (0.299 + 0.0803i)7-s + (−0.353 − 0.353i)8-s + (−0.0669 − 0.250i)10-s + (0.190 + 0.330i)11-s + (−1.13 + 0.302i)13-s + (0.0695 + 0.0401i)14-s + (0.401 + 0.695i)16-s + (−0.394 + 0.394i)17-s − 0.0309i·19-s + 0.933i·20-s + (0.0255 + 0.0953i)22-s + (1.23 − 0.331i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.619 - 0.784i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.619 - 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.104637 + 0.215889i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.104637 + 0.215889i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
good | 2 | \( 1 + (-0.5 - 0.133i)T + (3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (-2.09 - 0.562i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-2.09 - 3.63i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (14.6 - 3.93i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (6.70 - 6.70i)T - 289iT^{2} \) |
| 19 | \( 1 + 0.588iT - 361T^{2} \) |
| 23 | \( 1 + (-28.4 + 7.63i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (24.9 - 14.4i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (28.5 - 49.5i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (29.8 - 29.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-23.3 + 40.5i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (14.2 - 53.3i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (-26.5 - 7.12i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (47.9 + 47.9i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (44.1 + 25.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (15.0 + 26.1i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (11.0 + 41.3i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 - 30.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + (5.72 + 5.72i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (14.8 - 8.58i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-37.5 + 140. i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 173. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (30.9 + 8.28i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43549318671308651361814304449, −10.41228916980780061695800623377, −9.264836477220739736168219695921, −8.880351809644041271404638072209, −7.73453786948798309441819333349, −6.62543609046065506846090599639, −5.06517993872242692280563626328, −4.85841554234899866840802031731, −3.57743120909753394194440187429, −1.54575483569711302883503612692,
0.099065668301956841509608932043, 2.59265231510924277495717589200, 3.66277185782574290073304972367, 4.65888314410242019860087627878, 5.76623223304469519928320454034, 7.25856867309469429920728193840, 7.72675596258492529563789316288, 8.943181755023219341845814049371, 9.719171891579071167333394274314, 10.93036734812199018685943304634