L(s) = 1 | + (0.5 − 1.86i)2-s + (0.232 + 0.133i)4-s + (−2.5 − 4.33i)5-s + (−3.09 + 11.5i)7-s + (5.83 − 5.83i)8-s + (−9.33 + 2.49i)10-s + (−3.09 − 5.36i)11-s + (−4.30 − 16.0i)13-s + (20.0 + 11.5i)14-s + (−7.42 − 12.8i)16-s + (−22.2 − 22.2i)17-s − 30.5i·19-s − 1.33i·20-s + (−11.5 + 3.09i)22-s + (2.50 + 9.36i)23-s + ⋯ |
L(s) = 1 | + (0.250 − 0.933i)2-s + (0.0580 + 0.0334i)4-s + (−0.5 − 0.866i)5-s + (−0.442 + 1.65i)7-s + (0.728 − 0.728i)8-s + (−0.933 + 0.249i)10-s + (−0.281 − 0.487i)11-s + (−0.331 − 1.23i)13-s + (1.43 + 0.825i)14-s + (−0.464 − 0.804i)16-s + (−1.31 − 1.31i)17-s − 1.60i·19-s − 0.0669i·20-s + (−0.525 + 0.140i)22-s + (0.109 + 0.407i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 + 0.203i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.979 + 0.203i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.131302 - 1.27960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.131302 - 1.27960i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
good | 2 | \( 1 + (-0.5 + 1.86i)T + (-3.46 - 2i)T^{2} \) |
| 7 | \( 1 + (3.09 - 11.5i)T + (-42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (3.09 + 5.36i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (4.30 + 16.0i)T + (-146. + 84.5i)T^{2} \) |
| 17 | \( 1 + (22.2 + 22.2i)T + 289iT^{2} \) |
| 19 | \( 1 + 30.5iT - 361T^{2} \) |
| 23 | \( 1 + (-2.50 - 9.36i)T + (-458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (-0.990 + 0.571i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-2.58 + 4.48i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-16.8 - 16.8i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-2.60 + 4.51i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-1.29 - 0.346i)T + (1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (4.58 - 17.1i)T + (-1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-3.98 + 3.98i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (33.8 + 19.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-16.0 - 27.8i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-46.0 + 12.3i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 - 103.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (73.2 - 73.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (-83.8 + 48.4i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (45.5 + 12.2i)T + (5.96e3 + 3.44e3i)T^{2} \) |
| 89 | \( 1 + 18.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (36.0 - 134. i)T + (-8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04107650228716767585287623735, −9.615731091825396731740295143811, −9.000542525540477543991761267224, −8.025111212249545944633501832728, −6.84314593269163728525287751064, −5.45521118350249632217178480361, −4.66284070177115489446035806065, −3.07824934786688140310244373808, −2.44223281338416046811072796693, −0.48247456626948490408548070858,
1.96938839030454432726272047771, 3.84954784093900852657594931011, 4.47427532409369062143686666112, 6.21368929658699127408501783975, 6.77676453025344222148498688318, 7.43678697923827233477749568896, 8.263855266185105501277565688503, 9.886859336176531967806930504914, 10.62787801565825421690473333721, 11.16283715211363364040703254726