L(s) = 1 | + (0.570 − 0.152i)2-s + (−3.16 + 1.82i)4-s + (4.29 − 2.56i)5-s + (−9.62 + 2.58i)7-s + (−3.19 + 3.19i)8-s + (2.05 − 2.12i)10-s + (7.64 − 13.2i)11-s + (12.5 + 3.36i)13-s + (−5.10 + 2.94i)14-s + (5.96 − 10.3i)16-s + (−5.30 − 5.30i)17-s − 32.8i·19-s + (−8.88 + 15.9i)20-s + (2.33 − 8.72i)22-s + (34.1 + 9.14i)23-s + ⋯ |
L(s) = 1 | + (0.285 − 0.0764i)2-s + (−0.790 + 0.456i)4-s + (0.858 − 0.513i)5-s + (−1.37 + 0.368i)7-s + (−0.399 + 0.399i)8-s + (0.205 − 0.212i)10-s + (0.694 − 1.20i)11-s + (0.965 + 0.258i)13-s + (−0.364 + 0.210i)14-s + (0.372 − 0.645i)16-s + (−0.312 − 0.312i)17-s − 1.72i·19-s + (−0.444 + 0.797i)20-s + (0.106 − 0.396i)22-s + (1.48 + 0.397i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.384 + 0.923i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.384 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.22541 - 0.817487i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22541 - 0.817487i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.29 + 2.56i)T \) |
good | 2 | \( 1 + (-0.570 + 0.152i)T + (3.46 - 2i)T^{2} \) |
| 7 | \( 1 + (9.62 - 2.58i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (-7.64 + 13.2i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-12.5 - 3.36i)T + (146. + 84.5i)T^{2} \) |
| 17 | \( 1 + (5.30 + 5.30i)T + 289iT^{2} \) |
| 19 | \( 1 + 32.8iT - 361T^{2} \) |
| 23 | \( 1 + (-34.1 - 9.14i)T + (458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (31.4 + 18.1i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-0.699 - 1.21i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-15.9 - 15.9i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-5.14 - 8.91i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (13.4 + 50.1i)T + (-1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (11.5 - 3.09i)T + (1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-42.9 + 42.9i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (0.100 - 0.0578i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (2.12 - 3.68i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-15.6 + 58.4i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + 64.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-12.7 + 12.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (11.8 + 6.81i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-8.23 - 30.7i)T + (-5.96e3 + 3.44e3i)T^{2} \) |
| 89 | \( 1 - 68.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-14.6 + 3.91i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00387930116577318900555003961, −9.513972440535689921978830044747, −9.124671388623413868625365286753, −8.574574860068367870927109976424, −6.83579665047562674532953022744, −6.00312755390525327435206004628, −5.07277315764644343571278628955, −3.73362866578564630025336908684, −2.80780286207224296363769767546, −0.65057365621254767238541284420,
1.43199253857014077311896951580, 3.27766205652332013035127803772, 4.19350063038412479809030163267, 5.64787234583065543742570019999, 6.32420086197836576523346110811, 7.14614083003846383303723123191, 8.793624851910747562968729137913, 9.581972057730878186204296805423, 10.09096842899098698542054372008, 10.92193376970019907371877834432