L(s) = 1 | + (−1.01 − 3.79i)2-s + (−9.91 + 5.72i)4-s + (−3.87 − 3.15i)5-s + (2.11 + 7.89i)7-s + (20.7 + 20.7i)8-s + (−8.04 + 17.9i)10-s + (1.25 − 2.17i)11-s + (−0.784 + 2.92i)13-s + (27.8 − 16.0i)14-s + (34.6 − 60.0i)16-s + (8.93 − 8.93i)17-s − 6.84i·19-s + (56.5 + 9.10i)20-s + (−9.53 − 2.55i)22-s + (−2.63 + 9.82i)23-s + ⋯ |
L(s) = 1 | + (−0.508 − 1.89i)2-s + (−2.47 + 1.43i)4-s + (−0.775 − 0.631i)5-s + (0.302 + 1.12i)7-s + (2.58 + 2.58i)8-s + (−0.804 + 1.79i)10-s + (0.114 − 0.197i)11-s + (−0.0603 + 0.225i)13-s + (1.98 − 1.14i)14-s + (2.16 − 3.75i)16-s + (0.525 − 0.525i)17-s − 0.360i·19-s + (2.82 + 0.455i)20-s + (−0.433 − 0.116i)22-s + (−0.114 + 0.427i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.356 + 0.934i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.512103 - 0.743276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.512103 - 0.743276i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (3.87 + 3.15i)T \) |
good | 2 | \( 1 + (1.01 + 3.79i)T + (-3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (-2.11 - 7.89i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-1.25 + 2.17i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (0.784 - 2.92i)T + (-146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (-8.93 + 8.93i)T - 289iT^{2} \) |
| 19 | \( 1 + 6.84iT - 361T^{2} \) |
| 23 | \( 1 + (2.63 - 9.82i)T + (-458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (0.184 + 0.106i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-6.32 - 10.9i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-32.7 + 32.7i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-30.7 - 53.2i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-44.9 + 12.0i)T + (1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (8.21 + 30.6i)T + (-1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (37.7 + 37.7i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-79.6 + 46.0i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (26.1 - 45.2i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (75.3 + 20.1i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 - 66.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-71.8 - 71.8i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-104. - 60.5i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-29.9 + 8.03i)T + (5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 + 101. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-14.9 - 55.6i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16206892164073835048707756649, −9.792244254737020662120433779108, −9.133661969064995916024356183354, −8.439958880338269294557694830086, −7.63434506693401177882737049029, −5.39562033430372386960254067144, −4.48683173756446975093928771004, −3.37634225848337928817784661131, −2.23682370676985838995815115504, −0.823877433980470587993563006719,
0.77805022734125397402472566747, 3.85640343284224391766190553536, 4.61283107850114430733357152357, 5.97156597816246001669465062173, 6.80693683901566891605465750894, 7.76216502915828137948585987677, 7.935361398865374011664995785258, 9.242357313947641098396378168158, 10.27115038420442988919061393923, 10.82686312631011709190021426917