L(s) = 1 | + (−2.67 + 0.718i)2-s + (3.20 − 1.84i)4-s + (4.08 − 2.88i)5-s + (−8.26 + 2.21i)7-s + (0.596 − 0.596i)8-s + (−8.87 + 10.6i)10-s + (−0.222 + 0.385i)11-s + (−3.63 − 0.975i)13-s + (20.5 − 11.8i)14-s + (−8.56 + 14.8i)16-s + (−14.8 − 14.8i)17-s + 29.1i·19-s + (7.75 − 16.7i)20-s + (0.319 − 1.19i)22-s + (19.8 + 5.32i)23-s + ⋯ |
L(s) = 1 | + (−1.33 + 0.359i)2-s + (0.800 − 0.462i)4-s + (0.817 − 0.576i)5-s + (−1.18 + 0.316i)7-s + (0.0745 − 0.0745i)8-s + (−0.887 + 1.06i)10-s + (−0.0202 + 0.0350i)11-s + (−0.279 − 0.0750i)13-s + (1.46 − 0.847i)14-s + (−0.535 + 0.926i)16-s + (−0.872 − 0.872i)17-s + 1.53i·19-s + (0.387 − 0.838i)20-s + (0.0145 − 0.0542i)22-s + (0.864 + 0.231i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.452 - 0.891i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.452 - 0.891i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.246818 + 0.402125i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.246818 + 0.402125i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.08 + 2.88i)T \) |
good | 2 | \( 1 + (2.67 - 0.718i)T + (3.46 - 2i)T^{2} \) |
| 7 | \( 1 + (8.26 - 2.21i)T + (42.4 - 24.5i)T^{2} \) |
| 11 | \( 1 + (0.222 - 0.385i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (3.63 + 0.975i)T + (146. + 84.5i)T^{2} \) |
| 17 | \( 1 + (14.8 + 14.8i)T + 289iT^{2} \) |
| 19 | \( 1 - 29.1iT - 361T^{2} \) |
| 23 | \( 1 + (-19.8 - 5.32i)T + (458. + 264.5i)T^{2} \) |
| 29 | \( 1 + (-34.7 - 20.0i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (7.64 + 13.2i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-6.61 - 6.61i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-21.2 - 36.7i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-9.41 - 35.1i)T + (-1.60e3 + 924.5i)T^{2} \) |
| 47 | \( 1 + (72.3 - 19.3i)T + (1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (44.8 - 44.8i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (61.3 - 35.3i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (53.5 - 92.6i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (32.8 - 122. i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 - 71.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-77.9 + 77.9i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (-58.2 - 33.6i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-8.31 - 31.0i)T + (-5.96e3 + 3.44e3i)T^{2} \) |
| 89 | \( 1 + 104. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (143. - 38.5i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93230790366769568088041124646, −9.930438804817976079933779033824, −9.499824446839485234814403854716, −8.824578041227159276022668121797, −7.82763781526259787302582865381, −6.69793488362392152850099993092, −6.01098348472307433585086228221, −4.62162503406398180605895624631, −2.83414270276775263521238819073, −1.26107704364591212916399410174,
0.34152612527800833167174253820, 2.07453387830017849307295789419, 3.12922753746309913538738427203, 4.90053117758006526848388553083, 6.51430513454362700402408907667, 6.89502344268642518759569726419, 8.239223850269277074309348091639, 9.334161968936256624468313343918, 9.601428571558301215151919397005, 10.76266643103974616523682092275