L(s) = 1 | + (0.933 + 0.250i)2-s + (−2.65 − 1.53i)4-s + (−2.47 − 4.34i)5-s + (−2.61 − 0.700i)7-s + (−4.82 − 4.82i)8-s + (−1.22 − 4.67i)10-s + (8.02 + 13.8i)11-s + (−0.830 + 0.222i)13-s + (−2.26 − 1.30i)14-s + (2.83 + 4.90i)16-s + (−7.56 + 7.56i)17-s + 21.0i·19-s + (−0.0990 + 15.3i)20-s + (4.01 + 14.9i)22-s + (−34.5 + 9.25i)23-s + ⋯ |
L(s) = 1 | + (0.466 + 0.125i)2-s + (−0.663 − 0.383i)4-s + (−0.494 − 0.869i)5-s + (−0.373 − 0.100i)7-s + (−0.603 − 0.603i)8-s + (−0.122 − 0.467i)10-s + (0.729 + 1.26i)11-s + (−0.0638 + 0.0171i)13-s + (−0.161 − 0.0933i)14-s + (0.177 + 0.306i)16-s + (−0.444 + 0.444i)17-s + 1.10i·19-s + (−0.00495 + 0.766i)20-s + (0.182 + 0.680i)22-s + (−1.50 + 0.402i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.614 - 0.788i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.614 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.168085 + 0.343956i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.168085 + 0.343956i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.47 + 4.34i)T \) |
good | 2 | \( 1 + (-0.933 - 0.250i)T + (3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (2.61 + 0.700i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-8.02 - 13.8i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (0.830 - 0.222i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (7.56 - 7.56i)T - 289iT^{2} \) |
| 19 | \( 1 - 21.0iT - 361T^{2} \) |
| 23 | \( 1 + (34.5 - 9.25i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (11.6 - 6.72i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-19.6 + 33.9i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-5.47 + 5.47i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (34.7 - 60.1i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-20.3 + 75.9i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (18.7 + 5.01i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-34.8 - 34.8i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (53.6 + 31.0i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-33.6 - 58.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-10.7 - 40.0i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 71.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (23.5 + 23.5i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (-4.86 + 2.80i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (9.55 - 35.6i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 23.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (132. + 35.6i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74153814523066044738050992747, −10.12302389001825149100112470714, −9.636220371332069900994486971564, −8.683020769959025393567586570103, −7.71107728562678908342655395961, −6.44802824682803448893697523074, −5.49173686027280635272301696634, −4.31183371094244570428125911014, −3.87178820745627572721506973630, −1.60368221393429584455624404370,
0.14584795193178123336072118856, 2.76412628048784463153703112063, 3.58487540388353634971997262202, 4.57875367820555523322128661983, 5.95892696590286709463925393831, 6.80443801537564399775571322774, 8.051423479702546998352762599488, 8.815360686353882334246938476418, 9.775281906214477407162537440187, 10.98974890563753982143913275783