L(s) = 1 | + (0.923 + 3.44i)2-s + (−7.56 + 4.36i)4-s + (−2.17 + 4.50i)5-s + (−1.60 − 5.99i)7-s + (−11.9 − 11.9i)8-s + (−17.5 − 3.32i)10-s + (−10.3 + 17.8i)11-s + (1.49 − 5.56i)13-s + (19.1 − 11.0i)14-s + (12.6 − 21.9i)16-s + (3.85 − 3.85i)17-s − 18.4i·19-s + (−3.23 − 43.5i)20-s + (−71.2 − 19.0i)22-s + (5.18 − 19.3i)23-s + ⋯ |
L(s) = 1 | + (0.461 + 1.72i)2-s + (−1.89 + 1.09i)4-s + (−0.434 + 0.900i)5-s + (−0.229 − 0.856i)7-s + (−1.49 − 1.49i)8-s + (−1.75 − 0.332i)10-s + (−0.939 + 1.62i)11-s + (0.114 − 0.428i)13-s + (1.37 − 0.791i)14-s + (0.791 − 1.37i)16-s + (0.226 − 0.226i)17-s − 0.973i·19-s + (−0.161 − 2.17i)20-s + (−3.23 − 0.867i)22-s + (0.225 − 0.841i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 + 0.923i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.383 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.456625 - 0.304921i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.456625 - 0.304921i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.17 - 4.50i)T \) |
good | 2 | \( 1 + (-0.923 - 3.44i)T + (-3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (1.60 + 5.99i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (10.3 - 17.8i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-1.49 + 5.56i)T + (-146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (-3.85 + 3.85i)T - 289iT^{2} \) |
| 19 | \( 1 + 18.4iT - 361T^{2} \) |
| 23 | \( 1 + (-5.18 + 19.3i)T + (-458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (9.21 + 5.32i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-16.5 - 28.7i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (35.8 - 35.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-6.02 - 10.4i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (48.6 - 13.0i)T + (1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (0.225 + 0.840i)T + (-1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-11.6 - 11.6i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (72.8 - 42.0i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (34.8 - 60.4i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-52.5 - 14.0i)T + (3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 107.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-8.17 - 8.17i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (63.3 + 36.5i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-5.72 + 1.53i)T + (5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 + 6.20iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (20.1 + 75.0i)T + (-8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.04657203011249024932404069302, −10.59534060538761345733711130072, −9.973860032721475210046578399968, −8.593503817512325274516054096783, −7.55196893213361472266460009300, −7.16335902226225854531687248108, −6.43045521176655539902910693504, −5.03507128332291288836520486312, −4.33085912468157606321426122650, −2.98421840389795093127674387913,
0.20295174114854201033047162459, 1.68835493655750148003780066670, 3.08092518916763243663856206140, 3.90348088962384805623157618681, 5.24123487337466654898180232823, 5.80372248480743155701264249297, 7.985656966335806730360993712274, 8.791090824080837516361867244186, 9.517114183644150294271035479444, 10.59592833276536489812596433710