Properties

Label 2-4050-1.1-c1-0-22
Degree $2$
Conductor $4050$
Sign $1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4.44·7-s − 8-s + 1.44·11-s − 2.44·13-s − 4.44·14-s + 16-s + 3.89·17-s − 0.550·19-s − 1.44·22-s − 2.89·23-s + 2.44·26-s + 4.44·28-s − 6·29-s + 6.44·31-s − 32-s − 3.89·34-s + 8·37-s + 0.550·38-s − 41-s + 7.44·43-s + 1.44·44-s + 2.89·46-s + 0.449·47-s + 12.7·49-s − 2.44·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.68·7-s − 0.353·8-s + 0.437·11-s − 0.679·13-s − 1.18·14-s + 0.250·16-s + 0.945·17-s − 0.126·19-s − 0.309·22-s − 0.604·23-s + 0.480·26-s + 0.840·28-s − 1.11·29-s + 1.15·31-s − 0.176·32-s − 0.668·34-s + 1.31·37-s + 0.0893·38-s − 0.156·41-s + 1.13·43-s + 0.218·44-s + 0.427·46-s + 0.0655·47-s + 1.82·49-s − 0.339·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.780093107\)
\(L(\frac12)\) \(\approx\) \(1.780093107\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4.44T + 7T^{2} \)
11 \( 1 - 1.44T + 11T^{2} \)
13 \( 1 + 2.44T + 13T^{2} \)
17 \( 1 - 3.89T + 17T^{2} \)
19 \( 1 + 0.550T + 19T^{2} \)
23 \( 1 + 2.89T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 6.44T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 + T + 41T^{2} \)
43 \( 1 - 7.44T + 43T^{2} \)
47 \( 1 - 0.449T + 47T^{2} \)
53 \( 1 - 8.44T + 53T^{2} \)
59 \( 1 + 11.2T + 59T^{2} \)
61 \( 1 + 0.449T + 61T^{2} \)
67 \( 1 - 9.44T + 67T^{2} \)
71 \( 1 - 2.44T + 71T^{2} \)
73 \( 1 + 4.79T + 73T^{2} \)
79 \( 1 + 7.34T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 - 13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.339563986932870424202180468562, −7.72382008668861307350916612986, −7.38215223168032834681833095580, −6.24779322808817161528656473236, −5.51590793892054510298416854158, −4.69231405209101975306355702254, −3.92371181927958158556053464890, −2.64139178383898371260436569300, −1.80484528932071689015137879459, −0.896780737417836870195025678475, 0.896780737417836870195025678475, 1.80484528932071689015137879459, 2.64139178383898371260436569300, 3.92371181927958158556053464890, 4.69231405209101975306355702254, 5.51590793892054510298416854158, 6.24779322808817161528656473236, 7.38215223168032834681833095580, 7.72382008668861307350916612986, 8.339563986932870424202180468562

Graph of the $Z$-function along the critical line