Properties

Label 2-4050-1.1-c1-0-48
Degree $2$
Conductor $4050$
Sign $-1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 2·11-s − 6·13-s + 14-s + 16-s + 2·17-s + 6·19-s − 2·22-s − 23-s + 6·26-s − 28-s − 9·29-s − 2·31-s − 32-s − 2·34-s + 2·37-s − 6·38-s + 11·41-s − 4·43-s + 2·44-s + 46-s + 7·47-s − 6·49-s − 6·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 0.603·11-s − 1.66·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s + 1.37·19-s − 0.426·22-s − 0.208·23-s + 1.17·26-s − 0.188·28-s − 1.67·29-s − 0.359·31-s − 0.176·32-s − 0.342·34-s + 0.328·37-s − 0.973·38-s + 1.71·41-s − 0.609·43-s + 0.301·44-s + 0.147·46-s + 1.02·47-s − 6/7·49-s − 0.832·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 11 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83363987662291462133290912027, −7.51054612699914631844435303243, −6.85375087117219460892529582818, −5.86969935881180331945520030129, −5.25833616399397912417664210182, −4.18242956185978364798445194529, −3.23108286709011396574644230445, −2.39873837184369674455978706927, −1.29732355983093497181986455091, 0, 1.29732355983093497181986455091, 2.39873837184369674455978706927, 3.23108286709011396574644230445, 4.18242956185978364798445194529, 5.25833616399397912417664210182, 5.86969935881180331945520030129, 6.85375087117219460892529582818, 7.51054612699914631844435303243, 7.83363987662291462133290912027

Graph of the $Z$-function along the critical line