L(s) = 1 | − 2-s + 4-s − 7-s − 8-s + 2·11-s − 6·13-s + 14-s + 16-s + 2·17-s + 6·19-s − 2·22-s − 23-s + 6·26-s − 28-s − 9·29-s − 2·31-s − 32-s − 2·34-s + 2·37-s − 6·38-s + 11·41-s − 4·43-s + 2·44-s + 46-s + 7·47-s − 6·49-s − 6·52-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 0.603·11-s − 1.66·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s + 1.37·19-s − 0.426·22-s − 0.208·23-s + 1.17·26-s − 0.188·28-s − 1.67·29-s − 0.359·31-s − 0.176·32-s − 0.342·34-s + 0.328·37-s − 0.973·38-s + 1.71·41-s − 0.609·43-s + 0.301·44-s + 0.147·46-s + 1.02·47-s − 6/7·49-s − 0.832·52-s + ⋯ |
Λ(s)=(=(4050s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4050s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1+T+pT2 |
| 29 | 1+9T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−11T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−7T+pT2 |
| 53 | 1+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+7T+pT2 |
| 67 | 1+11T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1−11T+pT2 |
| 89 | 1+T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83363987662291462133290912027, −7.51054612699914631844435303243, −6.85375087117219460892529582818, −5.86969935881180331945520030129, −5.25833616399397912417664210182, −4.18242956185978364798445194529, −3.23108286709011396574644230445, −2.39873837184369674455978706927, −1.29732355983093497181986455091, 0,
1.29732355983093497181986455091, 2.39873837184369674455978706927, 3.23108286709011396574644230445, 4.18242956185978364798445194529, 5.25833616399397912417664210182, 5.86969935881180331945520030129, 6.85375087117219460892529582818, 7.51054612699914631844435303243, 7.83363987662291462133290912027