L(s) = 1 | − 4-s − 12·11-s + 16-s − 4·19-s + 16·31-s − 6·41-s + 12·44-s + 13·49-s + 12·59-s − 20·61-s − 64-s − 24·71-s + 4·76-s + 26·79-s + 18·89-s − 12·101-s + 32·109-s + 86·121-s − 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 3.61·11-s + 1/4·16-s − 0.917·19-s + 2.87·31-s − 0.937·41-s + 1.80·44-s + 13/7·49-s + 1.56·59-s − 2.56·61-s − 1/8·64-s − 2.84·71-s + 0.458·76-s + 2.92·79-s + 1.90·89-s − 1.19·101-s + 3.06·109-s + 7.81·121-s − 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(16402500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16402500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16402500
= 22⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
1045.83 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 16402500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8750363917 |
L(21) |
≈ |
0.8750363917 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+6T+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C2 | (1+2T+pT2)2 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1+3T+pT2)2 |
| 43 | C22 | 1+14T2+p2T4 |
| 47 | C22 | 1−85T2+p2T4 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | C2 | (1−6T+pT2)2 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C22 | 1+23T2+p2T4 |
| 79 | C2 | (1−13T+pT2)2 |
| 83 | C22 | 1−22T2+p2T4 |
| 89 | C2 | (1−9T+pT2)2 |
| 97 | C22 | 1+95T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.443543527109999486040773415037, −8.360513599788231649305551092323, −7.78861391901733425968005862456, −7.66664550777163495166842180272, −7.43454251005256896350504534642, −6.72223064171189385323875535870, −6.43968769814352673672335687940, −5.79981619360413301517388524391, −5.76711286000322917290163386923, −5.13452699826958485669962061430, −4.93109958198209828821033174466, −4.45990439335744863555543223553, −4.37840461121146647123840362926, −3.42651788310693317236485796022, −3.17253054456386988673960947603, −2.51259306415624349843873275129, −2.50947775301949639753157053890, −1.88648311828018344086146277706, −0.880704118397224503250104996619, −0.33230590500235985266084713897,
0.33230590500235985266084713897, 0.880704118397224503250104996619, 1.88648311828018344086146277706, 2.50947775301949639753157053890, 2.51259306415624349843873275129, 3.17253054456386988673960947603, 3.42651788310693317236485796022, 4.37840461121146647123840362926, 4.45990439335744863555543223553, 4.93109958198209828821033174466, 5.13452699826958485669962061430, 5.76711286000322917290163386923, 5.79981619360413301517388524391, 6.43968769814352673672335687940, 6.72223064171189385323875535870, 7.43454251005256896350504534642, 7.66664550777163495166842180272, 7.78861391901733425968005862456, 8.360513599788231649305551092323, 8.443543527109999486040773415037