Properties

Label 2-4050-5.4-c1-0-11
Degree $2$
Conductor $4050$
Sign $-0.894 + 0.447i$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + 4i·7-s i·8-s i·13-s − 4·14-s + 16-s + 3i·17-s + 4·19-s + 26-s − 4i·28-s − 9·29-s − 4·31-s + i·32-s − 3·34-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 1.51i·7-s − 0.353i·8-s − 0.277i·13-s − 1.06·14-s + 0.250·16-s + 0.727i·17-s + 0.917·19-s + 0.196·26-s − 0.755i·28-s − 1.67·29-s − 0.718·31-s + 0.176i·32-s − 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4050} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9512736748\)
\(L(\frac12)\) \(\approx\) \(0.9512736748\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + iT - 13T^{2} \)
17 \( 1 - 3iT - 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 9T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 - 12iT - 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 11iT - 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 + 12iT - 83T^{2} \)
89 \( 1 - 3T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900544546637272776672958934026, −7.993936650441777623983882154210, −7.56364463833830175531353236062, −6.53613904393485464906030937297, −5.74879838736197856199114861138, −5.49799113904488327787955516363, −4.50304757635060855614619496632, −3.49041304798277421477860532803, −2.60607115193411289020490299936, −1.48858910180921083050740063540, 0.28430474715581416215483635426, 1.29328879913571905920769689735, 2.34938286126865355307774196393, 3.57067866155828413075964481022, 3.89034624218382587703627909221, 4.89942545675181924895369893307, 5.57894157718129079984176208177, 6.73582501922805070921745560488, 7.43440074110954368404356386468, 7.81900891248323063813513522436

Graph of the $Z$-function along the critical line