L(s) = 1 | + i·2-s − 4-s + 4i·7-s − i·8-s − i·13-s − 4·14-s + 16-s + 3i·17-s + 4·19-s + 26-s − 4i·28-s − 9·29-s − 4·31-s + i·32-s − 3·34-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 1.51i·7-s − 0.353i·8-s − 0.277i·13-s − 1.06·14-s + 0.250·16-s + 0.727i·17-s + 0.917·19-s + 0.196·26-s − 0.755i·28-s − 1.67·29-s − 0.718·31-s + 0.176i·32-s − 0.514·34-s + ⋯ |
Λ(s)=(=(4050s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(4050s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
4050
= 2⋅34⋅52
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
32.3394 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4050(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4050, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.9512736748 |
L(21) |
≈ |
0.9512736748 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−4iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+iT−13T2 |
| 17 | 1−3iT−17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1−23T2 |
| 29 | 1+9T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1−iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1−12iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+T+61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1−11iT−73T2 |
| 79 | 1−16T+79T2 |
| 83 | 1+12iT−83T2 |
| 89 | 1−3T+89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.900544546637272776672958934026, −7.993936650441777623983882154210, −7.56364463833830175531353236062, −6.53613904393485464906030937297, −5.74879838736197856199114861138, −5.49799113904488327787955516363, −4.50304757635060855614619496632, −3.49041304798277421477860532803, −2.60607115193411289020490299936, −1.48858910180921083050740063540,
0.28430474715581416215483635426, 1.29328879913571905920769689735, 2.34938286126865355307774196393, 3.57067866155828413075964481022, 3.89034624218382587703627909221, 4.89942545675181924895369893307, 5.57894157718129079984176208177, 6.73582501922805070921745560488, 7.43440074110954368404356386468, 7.81900891248323063813513522436