L(s) = 1 | − 4-s + 16-s + 14·19-s + 12·29-s − 20·31-s + 18·41-s + 10·49-s + 18·59-s − 8·61-s − 64-s + 12·71-s − 14·76-s − 4·79-s − 30·89-s + 24·101-s − 4·109-s − 12·116-s − 22·121-s + 20·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1/4·16-s + 3.21·19-s + 2.22·29-s − 3.59·31-s + 2.81·41-s + 10/7·49-s + 2.34·59-s − 1.02·61-s − 1/8·64-s + 1.42·71-s − 1.60·76-s − 0.450·79-s − 3.17·89-s + 2.38·101-s − 0.383·109-s − 1.11·116-s − 2·121-s + 1.79·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(16402500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(16402500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
16402500
= 22⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
1045.83 |
Root analytic conductor: |
5.68677 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 16402500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.864301452 |
L(21) |
≈ |
2.864301452 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2 | (1−7T+pT2)2 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C2 | (1+10T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−9T+pT2)2 |
| 43 | C22 | 1−85T2+p2T4 |
| 47 | C22 | 1−58T2+p2T4 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | C2 | (1−9T+pT2)2 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C22 | 1+35T2+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C22 | 1−145T2+p2T4 |
| 79 | C2 | (1+2T+pT2)2 |
| 83 | C22 | 1−85T2+p2T4 |
| 89 | C2 | (1+15T+pT2)2 |
| 97 | C22 | 1+95T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.805856177567859002070517205193, −8.238351007039741974527337009330, −7.69902753231507802638820379407, −7.57722258358808735598727363065, −7.31226451940302336730862685322, −6.86909677353774157660711830655, −6.50318940822930695702618271278, −5.70264484843409895762071121840, −5.69807111918314342837917991461, −5.28887201959665023928439923614, −5.07810895614880171917144638683, −4.34608489938324046090043032395, −4.09099822425226783812750964769, −3.60672087724269147412590314271, −3.25571159188896679213064215776, −2.70865202978629777466092573965, −2.38779048958888832617022952129, −1.53438325158638567969320821890, −1.04347743841135907048745303464, −0.59433246210078581894413624233,
0.59433246210078581894413624233, 1.04347743841135907048745303464, 1.53438325158638567969320821890, 2.38779048958888832617022952129, 2.70865202978629777466092573965, 3.25571159188896679213064215776, 3.60672087724269147412590314271, 4.09099822425226783812750964769, 4.34608489938324046090043032395, 5.07810895614880171917144638683, 5.28887201959665023928439923614, 5.69807111918314342837917991461, 5.70264484843409895762071121840, 6.50318940822930695702618271278, 6.86909677353774157660711830655, 7.31226451940302336730862685322, 7.57722258358808735598727363065, 7.69902753231507802638820379407, 8.238351007039741974527337009330, 8.805856177567859002070517205193