L(s) = 1 | + 3-s − 2.71·5-s + 0.735·7-s + 9-s + 1.14·11-s − 2.71·15-s + 5.96·17-s − 3.07·19-s + 0.735·21-s + 5.31·23-s + 2.39·25-s + 27-s − 8.12·29-s − 1.67·31-s + 1.14·33-s − 2.00·35-s − 1.90·37-s + 8.69·41-s + 11.7·43-s − 2.71·45-s − 7.53·47-s − 6.45·49-s + 5.96·51-s + 1.86·53-s − 3.10·55-s − 3.07·57-s − 4.28·59-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.21·5-s + 0.278·7-s + 0.333·9-s + 0.344·11-s − 0.702·15-s + 1.44·17-s − 0.705·19-s + 0.160·21-s + 1.10·23-s + 0.478·25-s + 0.192·27-s − 1.50·29-s − 0.299·31-s + 0.199·33-s − 0.338·35-s − 0.313·37-s + 1.35·41-s + 1.78·43-s − 0.405·45-s − 1.09·47-s − 0.922·49-s + 0.835·51-s + 0.255·53-s − 0.419·55-s − 0.407·57-s − 0.557·59-s + ⋯ |
Λ(s)=(=(4056s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4056s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.956773646 |
L(21) |
≈ |
1.956773646 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 13 | 1 |
good | 5 | 1+2.71T+5T2 |
| 7 | 1−0.735T+7T2 |
| 11 | 1−1.14T+11T2 |
| 17 | 1−5.96T+17T2 |
| 19 | 1+3.07T+19T2 |
| 23 | 1−5.31T+23T2 |
| 29 | 1+8.12T+29T2 |
| 31 | 1+1.67T+31T2 |
| 37 | 1+1.90T+37T2 |
| 41 | 1−8.69T+41T2 |
| 43 | 1−11.7T+43T2 |
| 47 | 1+7.53T+47T2 |
| 53 | 1−1.86T+53T2 |
| 59 | 1+4.28T+59T2 |
| 61 | 1+2.91T+61T2 |
| 67 | 1+0.596T+67T2 |
| 71 | 1−2.30T+71T2 |
| 73 | 1−13.1T+73T2 |
| 79 | 1−12.6T+79T2 |
| 83 | 1−9.10T+83T2 |
| 89 | 1−8.77T+89T2 |
| 97 | 1+6.86T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.264311817543293700092118026135, −7.70738194191150754913516085148, −7.32507016216675852961706205000, −6.32147117028371872348662408590, −5.36102469624808980829449377019, −4.48796299814743107151708971411, −3.72743283637119550623362156495, −3.19831522720164251665746945645, −1.99192125140785734051341695848, −0.789997458263512926483671216196,
0.789997458263512926483671216196, 1.99192125140785734051341695848, 3.19831522720164251665746945645, 3.72743283637119550623362156495, 4.48796299814743107151708971411, 5.36102469624808980829449377019, 6.32147117028371872348662408590, 7.32507016216675852961706205000, 7.70738194191150754913516085148, 8.264311817543293700092118026135