Properties

Label 2-4056-1.1-c1-0-19
Degree $2$
Conductor $4056$
Sign $1$
Analytic cond. $32.3873$
Root an. cond. $5.69098$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2.71·5-s + 0.735·7-s + 9-s + 1.14·11-s − 2.71·15-s + 5.96·17-s − 3.07·19-s + 0.735·21-s + 5.31·23-s + 2.39·25-s + 27-s − 8.12·29-s − 1.67·31-s + 1.14·33-s − 2.00·35-s − 1.90·37-s + 8.69·41-s + 11.7·43-s − 2.71·45-s − 7.53·47-s − 6.45·49-s + 5.96·51-s + 1.86·53-s − 3.10·55-s − 3.07·57-s − 4.28·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.21·5-s + 0.278·7-s + 0.333·9-s + 0.344·11-s − 0.702·15-s + 1.44·17-s − 0.705·19-s + 0.160·21-s + 1.10·23-s + 0.478·25-s + 0.192·27-s − 1.50·29-s − 0.299·31-s + 0.199·33-s − 0.338·35-s − 0.313·37-s + 1.35·41-s + 1.78·43-s − 0.405·45-s − 1.09·47-s − 0.922·49-s + 0.835·51-s + 0.255·53-s − 0.419·55-s − 0.407·57-s − 0.557·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4056\)    =    \(2^{3} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(32.3873\)
Root analytic conductor: \(5.69098\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4056,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.956773646\)
\(L(\frac12)\) \(\approx\) \(1.956773646\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 2.71T + 5T^{2} \)
7 \( 1 - 0.735T + 7T^{2} \)
11 \( 1 - 1.14T + 11T^{2} \)
17 \( 1 - 5.96T + 17T^{2} \)
19 \( 1 + 3.07T + 19T^{2} \)
23 \( 1 - 5.31T + 23T^{2} \)
29 \( 1 + 8.12T + 29T^{2} \)
31 \( 1 + 1.67T + 31T^{2} \)
37 \( 1 + 1.90T + 37T^{2} \)
41 \( 1 - 8.69T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 + 7.53T + 47T^{2} \)
53 \( 1 - 1.86T + 53T^{2} \)
59 \( 1 + 4.28T + 59T^{2} \)
61 \( 1 + 2.91T + 61T^{2} \)
67 \( 1 + 0.596T + 67T^{2} \)
71 \( 1 - 2.30T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 - 12.6T + 79T^{2} \)
83 \( 1 - 9.10T + 83T^{2} \)
89 \( 1 - 8.77T + 89T^{2} \)
97 \( 1 + 6.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.264311817543293700092118026135, −7.70738194191150754913516085148, −7.32507016216675852961706205000, −6.32147117028371872348662408590, −5.36102469624808980829449377019, −4.48796299814743107151708971411, −3.72743283637119550623362156495, −3.19831522720164251665746945645, −1.99192125140785734051341695848, −0.789997458263512926483671216196, 0.789997458263512926483671216196, 1.99192125140785734051341695848, 3.19831522720164251665746945645, 3.72743283637119550623362156495, 4.48796299814743107151708971411, 5.36102469624808980829449377019, 6.32147117028371872348662408590, 7.32507016216675852961706205000, 7.70738194191150754913516085148, 8.264311817543293700092118026135

Graph of the $Z$-function along the critical line