Properties

Label 2-4140-1.1-c1-0-21
Degree $2$
Conductor $4140$
Sign $1$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5.21·7-s + 2.67·11-s + 0.186·13-s − 1.99·17-s − 0.675·19-s + 23-s + 25-s + 5.02·29-s + 7.52·31-s + 5.21·35-s + 4.34·37-s − 6.60·41-s − 2.84·43-s − 13.5·47-s + 20.1·49-s + 12.9·53-s + 2.67·55-s − 6.74·59-s + 8.65·61-s + 0.186·65-s − 12.1·67-s + 0.181·71-s + 3.81·73-s + 13.9·77-s − 10.4·79-s + 16.8·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.96·7-s + 0.806·11-s + 0.0516·13-s − 0.482·17-s − 0.154·19-s + 0.208·23-s + 0.200·25-s + 0.933·29-s + 1.35·31-s + 0.880·35-s + 0.715·37-s − 1.03·41-s − 0.433·43-s − 1.98·47-s + 2.87·49-s + 1.77·53-s + 0.360·55-s − 0.878·59-s + 1.10·61-s + 0.0230·65-s − 1.48·67-s + 0.0215·71-s + 0.446·73-s + 1.58·77-s − 1.18·79-s + 1.84·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.001854418\)
\(L(\frac12)\) \(\approx\) \(3.001854418\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good7 \( 1 - 5.21T + 7T^{2} \)
11 \( 1 - 2.67T + 11T^{2} \)
13 \( 1 - 0.186T + 13T^{2} \)
17 \( 1 + 1.99T + 17T^{2} \)
19 \( 1 + 0.675T + 19T^{2} \)
29 \( 1 - 5.02T + 29T^{2} \)
31 \( 1 - 7.52T + 31T^{2} \)
37 \( 1 - 4.34T + 37T^{2} \)
41 \( 1 + 6.60T + 41T^{2} \)
43 \( 1 + 2.84T + 43T^{2} \)
47 \( 1 + 13.5T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 + 6.74T + 59T^{2} \)
61 \( 1 - 8.65T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 - 0.181T + 71T^{2} \)
73 \( 1 - 3.81T + 73T^{2} \)
79 \( 1 + 10.4T + 79T^{2} \)
83 \( 1 - 16.8T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + 4.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.442243286716418662687894475482, −7.85713167537143458037708120167, −6.89513225633032120992615731138, −6.28429044370115429211532424112, −5.27695063021709764716262376993, −4.70899864484118438677909233458, −4.07000330528055237724083539442, −2.77086373348407089923421084432, −1.81439403720821503003579893097, −1.10546118893969112856178848140, 1.10546118893969112856178848140, 1.81439403720821503003579893097, 2.77086373348407089923421084432, 4.07000330528055237724083539442, 4.70899864484118438677909233458, 5.27695063021709764716262376993, 6.28429044370115429211532424112, 6.89513225633032120992615731138, 7.85713167537143458037708120167, 8.442243286716418662687894475482

Graph of the $Z$-function along the critical line