L(s) = 1 | + 5-s + 5.21·7-s + 2.67·11-s + 0.186·13-s − 1.99·17-s − 0.675·19-s + 23-s + 25-s + 5.02·29-s + 7.52·31-s + 5.21·35-s + 4.34·37-s − 6.60·41-s − 2.84·43-s − 13.5·47-s + 20.1·49-s + 12.9·53-s + 2.67·55-s − 6.74·59-s + 8.65·61-s + 0.186·65-s − 12.1·67-s + 0.181·71-s + 3.81·73-s + 13.9·77-s − 10.4·79-s + 16.8·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.96·7-s + 0.806·11-s + 0.0516·13-s − 0.482·17-s − 0.154·19-s + 0.208·23-s + 0.200·25-s + 0.933·29-s + 1.35·31-s + 0.880·35-s + 0.715·37-s − 1.03·41-s − 0.433·43-s − 1.98·47-s + 2.87·49-s + 1.77·53-s + 0.360·55-s − 0.878·59-s + 1.10·61-s + 0.0230·65-s − 1.48·67-s + 0.0215·71-s + 0.446·73-s + 1.58·77-s − 1.18·79-s + 1.84·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.001854418\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.001854418\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 - T \) |
good | 7 | \( 1 - 5.21T + 7T^{2} \) |
| 11 | \( 1 - 2.67T + 11T^{2} \) |
| 13 | \( 1 - 0.186T + 13T^{2} \) |
| 17 | \( 1 + 1.99T + 17T^{2} \) |
| 19 | \( 1 + 0.675T + 19T^{2} \) |
| 29 | \( 1 - 5.02T + 29T^{2} \) |
| 31 | \( 1 - 7.52T + 31T^{2} \) |
| 37 | \( 1 - 4.34T + 37T^{2} \) |
| 41 | \( 1 + 6.60T + 41T^{2} \) |
| 43 | \( 1 + 2.84T + 43T^{2} \) |
| 47 | \( 1 + 13.5T + 47T^{2} \) |
| 53 | \( 1 - 12.9T + 53T^{2} \) |
| 59 | \( 1 + 6.74T + 59T^{2} \) |
| 61 | \( 1 - 8.65T + 61T^{2} \) |
| 67 | \( 1 + 12.1T + 67T^{2} \) |
| 71 | \( 1 - 0.181T + 71T^{2} \) |
| 73 | \( 1 - 3.81T + 73T^{2} \) |
| 79 | \( 1 + 10.4T + 79T^{2} \) |
| 83 | \( 1 - 16.8T + 83T^{2} \) |
| 89 | \( 1 + 12.4T + 89T^{2} \) |
| 97 | \( 1 + 4.92T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.442243286716418662687894475482, −7.85713167537143458037708120167, −6.89513225633032120992615731138, −6.28429044370115429211532424112, −5.27695063021709764716262376993, −4.70899864484118438677909233458, −4.07000330528055237724083539442, −2.77086373348407089923421084432, −1.81439403720821503003579893097, −1.10546118893969112856178848140,
1.10546118893969112856178848140, 1.81439403720821503003579893097, 2.77086373348407089923421084432, 4.07000330528055237724083539442, 4.70899864484118438677909233458, 5.27695063021709764716262376993, 6.28429044370115429211532424112, 6.89513225633032120992615731138, 7.85713167537143458037708120167, 8.442243286716418662687894475482