L(s) = 1 | + 5-s + 5.21·7-s + 2.67·11-s + 0.186·13-s − 1.99·17-s − 0.675·19-s + 23-s + 25-s + 5.02·29-s + 7.52·31-s + 5.21·35-s + 4.34·37-s − 6.60·41-s − 2.84·43-s − 13.5·47-s + 20.1·49-s + 12.9·53-s + 2.67·55-s − 6.74·59-s + 8.65·61-s + 0.186·65-s − 12.1·67-s + 0.181·71-s + 3.81·73-s + 13.9·77-s − 10.4·79-s + 16.8·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.96·7-s + 0.806·11-s + 0.0516·13-s − 0.482·17-s − 0.154·19-s + 0.208·23-s + 0.200·25-s + 0.933·29-s + 1.35·31-s + 0.880·35-s + 0.715·37-s − 1.03·41-s − 0.433·43-s − 1.98·47-s + 2.87·49-s + 1.77·53-s + 0.360·55-s − 0.878·59-s + 1.10·61-s + 0.0230·65-s − 1.48·67-s + 0.0215·71-s + 0.446·73-s + 1.58·77-s − 1.18·79-s + 1.84·83-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.001854418 |
L(21) |
≈ |
3.001854418 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 23 | 1−T |
good | 7 | 1−5.21T+7T2 |
| 11 | 1−2.67T+11T2 |
| 13 | 1−0.186T+13T2 |
| 17 | 1+1.99T+17T2 |
| 19 | 1+0.675T+19T2 |
| 29 | 1−5.02T+29T2 |
| 31 | 1−7.52T+31T2 |
| 37 | 1−4.34T+37T2 |
| 41 | 1+6.60T+41T2 |
| 43 | 1+2.84T+43T2 |
| 47 | 1+13.5T+47T2 |
| 53 | 1−12.9T+53T2 |
| 59 | 1+6.74T+59T2 |
| 61 | 1−8.65T+61T2 |
| 67 | 1+12.1T+67T2 |
| 71 | 1−0.181T+71T2 |
| 73 | 1−3.81T+73T2 |
| 79 | 1+10.4T+79T2 |
| 83 | 1−16.8T+83T2 |
| 89 | 1+12.4T+89T2 |
| 97 | 1+4.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.442243286716418662687894475482, −7.85713167537143458037708120167, −6.89513225633032120992615731138, −6.28429044370115429211532424112, −5.27695063021709764716262376993, −4.70899864484118438677909233458, −4.07000330528055237724083539442, −2.77086373348407089923421084432, −1.81439403720821503003579893097, −1.10546118893969112856178848140,
1.10546118893969112856178848140, 1.81439403720821503003579893097, 2.77086373348407089923421084432, 4.07000330528055237724083539442, 4.70899864484118438677909233458, 5.27695063021709764716262376993, 6.28429044370115429211532424112, 6.89513225633032120992615731138, 7.85713167537143458037708120167, 8.442243286716418662687894475482