Properties

Label 2-4140-5.4-c1-0-28
Degree $2$
Conductor $4140$
Sign $0.593 + 0.804i$
Analytic cond. $33.0580$
Root an. cond. $5.74961$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.79 + 1.32i)5-s − 0.476i·7-s − 3.39·11-s + 2.28i·13-s + 2.61i·17-s − 5.08·19-s i·23-s + (1.47 − 4.77i)25-s − 3.19·29-s + 3.65·31-s + (0.632 + 0.857i)35-s − 8.44i·37-s − 5.25·41-s − 0.269i·43-s + 8.26i·47-s + ⋯
L(s)  = 1  + (−0.804 + 0.593i)5-s − 0.180i·7-s − 1.02·11-s + 0.634i·13-s + 0.634i·17-s − 1.16·19-s − 0.208i·23-s + (0.295 − 0.955i)25-s − 0.592·29-s + 0.655·31-s + (0.106 + 0.145i)35-s − 1.38i·37-s − 0.820·41-s − 0.0410i·43-s + 1.20i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.593 + 0.804i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.593 + 0.804i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4140\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $0.593 + 0.804i$
Analytic conductor: \(33.0580\)
Root analytic conductor: \(5.74961\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4140} (829, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4140,\ (\ :1/2),\ 0.593 + 0.804i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8071712631\)
\(L(\frac12)\) \(\approx\) \(0.8071712631\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.79 - 1.32i)T \)
23 \( 1 + iT \)
good7 \( 1 + 0.476iT - 7T^{2} \)
11 \( 1 + 3.39T + 11T^{2} \)
13 \( 1 - 2.28iT - 13T^{2} \)
17 \( 1 - 2.61iT - 17T^{2} \)
19 \( 1 + 5.08T + 19T^{2} \)
29 \( 1 + 3.19T + 29T^{2} \)
31 \( 1 - 3.65T + 31T^{2} \)
37 \( 1 + 8.44iT - 37T^{2} \)
41 \( 1 + 5.25T + 41T^{2} \)
43 \( 1 + 0.269iT - 43T^{2} \)
47 \( 1 - 8.26iT - 47T^{2} \)
53 \( 1 + 7.77iT - 53T^{2} \)
59 \( 1 - 8.35T + 59T^{2} \)
61 \( 1 - 5.45T + 61T^{2} \)
67 \( 1 - 6.83iT - 67T^{2} \)
71 \( 1 + 6.28T + 71T^{2} \)
73 \( 1 + 4.90iT - 73T^{2} \)
79 \( 1 - 9.29T + 79T^{2} \)
83 \( 1 - 6.19iT - 83T^{2} \)
89 \( 1 + 0.423T + 89T^{2} \)
97 \( 1 + 8.67iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.277312840159466886570880246403, −7.57660512165354677481152183396, −6.91509460360579133248427759038, −6.23279504078321777878176508758, −5.32579372541192491807299440589, −4.32256645928829321364529166014, −3.84007525527954927740538645411, −2.78146557675333073287465271705, −1.97514388169613764405132064046, −0.31281668061671267295653460601, 0.78069405463034485309324069745, 2.18940939791622944136944065656, 3.10756195091028731338168955418, 3.98122312856823406848073016917, 4.90024806157015608038666440950, 5.33617440034480285915478652312, 6.33355233737523634511533439592, 7.23657949639143947628427458634, 7.88333836219916053697401974841, 8.458942658409271495516930030075

Graph of the $Z$-function along the critical line