L(s) = 1 | + (−1.79 + 1.32i)5-s − 0.476i·7-s − 3.39·11-s + 2.28i·13-s + 2.61i·17-s − 5.08·19-s − i·23-s + (1.47 − 4.77i)25-s − 3.19·29-s + 3.65·31-s + (0.632 + 0.857i)35-s − 8.44i·37-s − 5.25·41-s − 0.269i·43-s + 8.26i·47-s + ⋯ |
L(s) = 1 | + (−0.804 + 0.593i)5-s − 0.180i·7-s − 1.02·11-s + 0.634i·13-s + 0.634i·17-s − 1.16·19-s − 0.208i·23-s + (0.295 − 0.955i)25-s − 0.592·29-s + 0.655·31-s + (0.106 + 0.145i)35-s − 1.38i·37-s − 0.820·41-s − 0.0410i·43-s + 1.20i·47-s + ⋯ |
Λ(s)=(=(4140s/2ΓC(s)L(s)(0.593+0.804i)Λ(2−s)
Λ(s)=(=(4140s/2ΓC(s+1/2)L(s)(0.593+0.804i)Λ(1−s)
Degree: |
2 |
Conductor: |
4140
= 22⋅32⋅5⋅23
|
Sign: |
0.593+0.804i
|
Analytic conductor: |
33.0580 |
Root analytic conductor: |
5.74961 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4140(829,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4140, ( :1/2), 0.593+0.804i)
|
Particular Values
L(1) |
≈ |
0.8071712631 |
L(21) |
≈ |
0.8071712631 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1.79−1.32i)T |
| 23 | 1+iT |
good | 7 | 1+0.476iT−7T2 |
| 11 | 1+3.39T+11T2 |
| 13 | 1−2.28iT−13T2 |
| 17 | 1−2.61iT−17T2 |
| 19 | 1+5.08T+19T2 |
| 29 | 1+3.19T+29T2 |
| 31 | 1−3.65T+31T2 |
| 37 | 1+8.44iT−37T2 |
| 41 | 1+5.25T+41T2 |
| 43 | 1+0.269iT−43T2 |
| 47 | 1−8.26iT−47T2 |
| 53 | 1+7.77iT−53T2 |
| 59 | 1−8.35T+59T2 |
| 61 | 1−5.45T+61T2 |
| 67 | 1−6.83iT−67T2 |
| 71 | 1+6.28T+71T2 |
| 73 | 1+4.90iT−73T2 |
| 79 | 1−9.29T+79T2 |
| 83 | 1−6.19iT−83T2 |
| 89 | 1+0.423T+89T2 |
| 97 | 1+8.67iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.277312840159466886570880246403, −7.57660512165354677481152183396, −6.91509460360579133248427759038, −6.23279504078321777878176508758, −5.32579372541192491807299440589, −4.32256645928829321364529166014, −3.84007525527954927740538645411, −2.78146557675333073287465271705, −1.97514388169613764405132064046, −0.31281668061671267295653460601,
0.78069405463034485309324069745, 2.18940939791622944136944065656, 3.10756195091028731338168955418, 3.98122312856823406848073016917, 4.90024806157015608038666440950, 5.33617440034480285915478652312, 6.33355233737523634511533439592, 7.23657949639143947628427458634, 7.88333836219916053697401974841, 8.458942658409271495516930030075