L(s) = 1 | + (−1.07 + 1.95i)5-s + (2.36 − 2.36i)7-s + 1.43i·11-s + (−4.27 − 4.27i)13-s + (0.739 + 0.739i)17-s + 3.16i·19-s + (0.707 − 0.707i)23-s + (−2.67 − 4.22i)25-s − 8.01·29-s + 7.15·31-s + (2.08 + 7.16i)35-s + (−6.14 + 6.14i)37-s + 10.2i·41-s + (−1.42 − 1.42i)43-s + (5.93 + 5.93i)47-s + ⋯ |
L(s) = 1 | + (−0.481 + 0.876i)5-s + (0.892 − 0.892i)7-s + 0.432i·11-s + (−1.18 − 1.18i)13-s + (0.179 + 0.179i)17-s + 0.726i·19-s + (0.147 − 0.147i)23-s + (−0.535 − 0.844i)25-s − 1.48·29-s + 1.28·31-s + (0.351 + 1.21i)35-s + (−1.01 + 1.01i)37-s + 1.60i·41-s + (−0.217 − 0.217i)43-s + (0.865 + 0.865i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.337 - 0.941i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.337 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.066003614\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.066003614\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.07 - 1.95i)T \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + (-2.36 + 2.36i)T - 7iT^{2} \) |
| 11 | \( 1 - 1.43iT - 11T^{2} \) |
| 13 | \( 1 + (4.27 + 4.27i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.739 - 0.739i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.16iT - 19T^{2} \) |
| 29 | \( 1 + 8.01T + 29T^{2} \) |
| 31 | \( 1 - 7.15T + 31T^{2} \) |
| 37 | \( 1 + (6.14 - 6.14i)T - 37iT^{2} \) |
| 41 | \( 1 - 10.2iT - 41T^{2} \) |
| 43 | \( 1 + (1.42 + 1.42i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.93 - 5.93i)T + 47iT^{2} \) |
| 53 | \( 1 + (4.27 - 4.27i)T - 53iT^{2} \) |
| 59 | \( 1 - 11.8T + 59T^{2} \) |
| 61 | \( 1 - 10.6T + 61T^{2} \) |
| 67 | \( 1 + (2.37 - 2.37i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.71iT - 71T^{2} \) |
| 73 | \( 1 + (9.82 + 9.82i)T + 73iT^{2} \) |
| 79 | \( 1 - 10.7iT - 79T^{2} \) |
| 83 | \( 1 + (5.86 - 5.86i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.70T + 89T^{2} \) |
| 97 | \( 1 + (9.11 - 9.11i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216334950753885435849830322255, −7.891466784625547336364829342020, −7.31257619866750115558362734455, −6.64969279517422430844056856207, −5.62553646088175816112388114814, −4.81207578607539038278121517636, −4.10335427425947181298825273993, −3.22676442632314512395007352349, −2.36898865238737761472699133593, −1.14603150641216838485523578199,
0.31927028863870041965726210750, 1.74439945495774566942906684297, 2.42968963158498167682783526048, 3.73799238137365935893849818913, 4.52016932075721916314098913355, 5.23677058720628311623674704171, 5.64910039377653221798652435239, 6.99832635718267718599406011180, 7.40433342098221166401660153407, 8.430191159313587181553492024728