L(s) = 1 | + (0.866 − 0.5i)3-s + (−0.866 − 0.5i)7-s + (0.866 − 0.5i)11-s + 13-s + (−0.5 + 0.866i)17-s + (−0.866 − 0.5i)19-s − 0.999·21-s + (−0.866 + 0.5i)23-s − 25-s + i·27-s + (0.5 + 0.866i)29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.866 − 0.5i)39-s + (−0.5 − 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (−0.866 − 0.5i)7-s + (0.866 − 0.5i)11-s + 13-s + (−0.5 + 0.866i)17-s + (−0.866 − 0.5i)19-s − 0.999·21-s + (−0.866 + 0.5i)23-s − 25-s + i·27-s + (0.5 + 0.866i)29-s + (0.499 − 0.866i)33-s + (−0.5 − 0.866i)37-s + (0.866 − 0.5i)39-s + (−0.5 − 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 + 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 + 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.016835040\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.016835040\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - 2iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22953263066515072973263516924, −10.52120234297227686209109891925, −9.278732705497393728421628713913, −8.658177522756836334860803512222, −7.77131598109035245563120524235, −6.66415214941330116165408095173, −5.96317286444364306479759053007, −4.09853388883791422399930173828, −3.29670150837080691439743886181, −1.79150581374722169523346327457,
2.28266084185552703061708015507, 3.53034927906849868206101622665, 4.31431976680478807299938074315, 6.01198635240913829305323751910, 6.66474908410843033072042329246, 8.157227439348933907829570435057, 8.870630352424571040050027159609, 9.597400423543448633942747884557, 10.28837658274687258026633554452, 11.67246979525751465480309726986