Properties

Label 2-416-104.101-c1-0-0
Degree 22
Conductor 416416
Sign 0.8590.510i-0.859 - 0.510i
Analytic cond. 3.321773.32177
Root an. cond. 1.822571.82257
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.323 + 0.186i)3-s − 2.04·5-s + (0.768 + 0.443i)7-s + (−1.43 + 2.47i)9-s + (−0.654 − 1.13i)11-s + (−3.57 − 0.490i)13-s + (0.661 − 0.381i)15-s + (−1.02 + 1.76i)17-s + (−3.29 + 5.70i)19-s − 0.331·21-s + (−1.76 − 3.06i)23-s − 0.816·25-s − 2.18i·27-s + (−2.84 + 1.64i)29-s + 7.97i·31-s + ⋯
L(s)  = 1  + (−0.186 + 0.107i)3-s − 0.914·5-s + (0.290 + 0.167i)7-s + (−0.476 + 0.825i)9-s + (−0.197 − 0.341i)11-s + (−0.990 − 0.136i)13-s + (0.170 − 0.0985i)15-s + (−0.247 + 0.429i)17-s + (−0.755 + 1.30i)19-s − 0.0722·21-s + (−0.368 − 0.638i)23-s − 0.163·25-s − 0.421i·27-s + (−0.529 + 0.305i)29-s + 1.43i·31-s + ⋯

Functional equation

Λ(s)=(416s/2ΓC(s)L(s)=((0.8590.510i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.510i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(416s/2ΓC(s+1/2)L(s)=((0.8590.510i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.510i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 416416    =    25132^{5} \cdot 13
Sign: 0.8590.510i-0.859 - 0.510i
Analytic conductor: 3.321773.32177
Root analytic conductor: 1.822571.82257
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ416(49,)\chi_{416} (49, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 416, ( :1/2), 0.8590.510i)(2,\ 416,\ (\ :1/2),\ -0.859 - 0.510i)

Particular Values

L(1)L(1) \approx 0.107759+0.392189i0.107759 + 0.392189i
L(12)L(\frac12) \approx 0.107759+0.392189i0.107759 + 0.392189i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1+(3.57+0.490i)T 1 + (3.57 + 0.490i)T
good3 1+(0.3230.186i)T+(1.52.59i)T2 1 + (0.323 - 0.186i)T + (1.5 - 2.59i)T^{2}
5 1+2.04T+5T2 1 + 2.04T + 5T^{2}
7 1+(0.7680.443i)T+(3.5+6.06i)T2 1 + (-0.768 - 0.443i)T + (3.5 + 6.06i)T^{2}
11 1+(0.654+1.13i)T+(5.5+9.52i)T2 1 + (0.654 + 1.13i)T + (-5.5 + 9.52i)T^{2}
17 1+(1.021.76i)T+(8.514.7i)T2 1 + (1.02 - 1.76i)T + (-8.5 - 14.7i)T^{2}
19 1+(3.295.70i)T+(9.516.4i)T2 1 + (3.29 - 5.70i)T + (-9.5 - 16.4i)T^{2}
23 1+(1.76+3.06i)T+(11.5+19.9i)T2 1 + (1.76 + 3.06i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.841.64i)T+(14.525.1i)T2 1 + (2.84 - 1.64i)T + (14.5 - 25.1i)T^{2}
31 17.97iT31T2 1 - 7.97iT - 31T^{2}
37 1+(2.253.90i)T+(18.5+32.0i)T2 1 + (-2.25 - 3.90i)T + (-18.5 + 32.0i)T^{2}
41 1+(6.06+3.50i)T+(20.535.5i)T2 1 + (-6.06 + 3.50i)T + (20.5 - 35.5i)T^{2}
43 1+(5.81+3.35i)T+(21.5+37.2i)T2 1 + (5.81 + 3.35i)T + (21.5 + 37.2i)T^{2}
47 1+0.0334iT47T2 1 + 0.0334iT - 47T^{2}
53 1+2.79iT53T2 1 + 2.79iT - 53T^{2}
59 1+(3.94+6.82i)T+(29.551.0i)T2 1 + (-3.94 + 6.82i)T + (-29.5 - 51.0i)T^{2}
61 1+(11.46.62i)T+(30.5+52.8i)T2 1 + (-11.4 - 6.62i)T + (30.5 + 52.8i)T^{2}
67 1+(6.3110.9i)T+(33.5+58.0i)T2 1 + (-6.31 - 10.9i)T + (-33.5 + 58.0i)T^{2}
71 1+(10.0+5.78i)T+(35.5+61.4i)T2 1 + (10.0 + 5.78i)T + (35.5 + 61.4i)T^{2}
73 13.99iT73T2 1 - 3.99iT - 73T^{2}
79 11.04T+79T2 1 - 1.04T + 79T^{2}
83 111.8T+83T2 1 - 11.8T + 83T^{2}
89 1+(12.57.23i)T+(44.577.0i)T2 1 + (12.5 - 7.23i)T + (44.5 - 77.0i)T^{2}
97 1+(0.5920.342i)T+(48.5+84.0i)T2 1 + (-0.592 - 0.342i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.59537140038712339882458890162, −10.71636623408150912651963091469, −10.02442674387675930329928869876, −8.458809423556299394104348928595, −8.145705262691588985831853125588, −7.04817882451067019317527895100, −5.74606952235436261245102632512, −4.80519661238100177750558412846, −3.69311297514648904253740285431, −2.21058465006549091592255359985, 0.25209605739190198611799124885, 2.48863828395004027914805612209, 3.93019332247272793796256636687, 4.84372935517033923772994542881, 6.15044161945329785448288349171, 7.24675551433309809675193192692, 7.88738185788115738487558053368, 9.085457378090370431233272645683, 9.817903943992353817862354655628, 11.31408820654202236105727610653

Graph of the ZZ-function along the critical line