L(s) = 1 | + (−0.323 + 0.186i)3-s − 2.04·5-s + (0.768 + 0.443i)7-s + (−1.43 + 2.47i)9-s + (−0.654 − 1.13i)11-s + (−3.57 − 0.490i)13-s + (0.661 − 0.381i)15-s + (−1.02 + 1.76i)17-s + (−3.29 + 5.70i)19-s − 0.331·21-s + (−1.76 − 3.06i)23-s − 0.816·25-s − 2.18i·27-s + (−2.84 + 1.64i)29-s + 7.97i·31-s + ⋯ |
L(s) = 1 | + (−0.186 + 0.107i)3-s − 0.914·5-s + (0.290 + 0.167i)7-s + (−0.476 + 0.825i)9-s + (−0.197 − 0.341i)11-s + (−0.990 − 0.136i)13-s + (0.170 − 0.0985i)15-s + (−0.247 + 0.429i)17-s + (−0.755 + 1.30i)19-s − 0.0722·21-s + (−0.368 − 0.638i)23-s − 0.163·25-s − 0.421i·27-s + (−0.529 + 0.305i)29-s + 1.43i·31-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.859−0.510i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.859−0.510i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.859−0.510i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.859−0.510i)
|
Particular Values
L(1) |
≈ |
0.107759+0.392189i |
L(21) |
≈ |
0.107759+0.392189i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3.57+0.490i)T |
good | 3 | 1+(0.323−0.186i)T+(1.5−2.59i)T2 |
| 5 | 1+2.04T+5T2 |
| 7 | 1+(−0.768−0.443i)T+(3.5+6.06i)T2 |
| 11 | 1+(0.654+1.13i)T+(−5.5+9.52i)T2 |
| 17 | 1+(1.02−1.76i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.29−5.70i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.76+3.06i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2.84−1.64i)T+(14.5−25.1i)T2 |
| 31 | 1−7.97iT−31T2 |
| 37 | 1+(−2.25−3.90i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−6.06+3.50i)T+(20.5−35.5i)T2 |
| 43 | 1+(5.81+3.35i)T+(21.5+37.2i)T2 |
| 47 | 1+0.0334iT−47T2 |
| 53 | 1+2.79iT−53T2 |
| 59 | 1+(−3.94+6.82i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−11.4−6.62i)T+(30.5+52.8i)T2 |
| 67 | 1+(−6.31−10.9i)T+(−33.5+58.0i)T2 |
| 71 | 1+(10.0+5.78i)T+(35.5+61.4i)T2 |
| 73 | 1−3.99iT−73T2 |
| 79 | 1−1.04T+79T2 |
| 83 | 1−11.8T+83T2 |
| 89 | 1+(12.5−7.23i)T+(44.5−77.0i)T2 |
| 97 | 1+(−0.592−0.342i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59537140038712339882458890162, −10.71636623408150912651963091469, −10.02442674387675930329928869876, −8.458809423556299394104348928595, −8.145705262691588985831853125588, −7.04817882451067019317527895100, −5.74606952235436261245102632512, −4.80519661238100177750558412846, −3.69311297514648904253740285431, −2.21058465006549091592255359985,
0.25209605739190198611799124885, 2.48863828395004027914805612209, 3.93019332247272793796256636687, 4.84372935517033923772994542881, 6.15044161945329785448288349171, 7.24675551433309809675193192692, 7.88738185788115738487558053368, 9.085457378090370431233272645683, 9.817903943992353817862354655628, 11.31408820654202236105727610653