L(s) = 1 | + (−1.41 + 0.0124i)2-s + (0.185 + 0.447i)3-s + (1.99 − 0.0352i)4-s + (−0.172 − 0.416i)5-s + (−0.267 − 0.630i)6-s − 2.63·7-s + (−2.82 + 0.0748i)8-s + (1.95 − 1.95i)9-s + (0.249 + 0.586i)10-s + (−3.87 + 1.60i)11-s + (0.386 + 0.888i)12-s + (−3.51 − 0.795i)13-s + (3.72 − 0.0328i)14-s + (0.154 − 0.154i)15-s + (3.99 − 0.141i)16-s − 3.57·17-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.00882i)2-s + (0.107 + 0.258i)3-s + (0.999 − 0.0176i)4-s + (−0.0771 − 0.186i)5-s + (−0.109 − 0.257i)6-s − 0.995·7-s + (−0.999 + 0.0264i)8-s + (0.651 − 0.651i)9-s + (0.0787 + 0.185i)10-s + (−1.16 + 0.484i)11-s + (0.111 + 0.256i)12-s + (−0.975 − 0.220i)13-s + (0.995 − 0.00878i)14-s + (0.0398 − 0.0398i)15-s + (0.999 − 0.0352i)16-s − 0.867·17-s + ⋯ |
Λ(s)=(=(416s/2ΓC(s)L(s)(−0.951+0.307i)Λ(2−s)
Λ(s)=(=(416s/2ΓC(s+1/2)L(s)(−0.951+0.307i)Λ(1−s)
Degree: |
2 |
Conductor: |
416
= 25⋅13
|
Sign: |
−0.951+0.307i
|
Analytic conductor: |
3.32177 |
Root analytic conductor: |
1.82257 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ416(395,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 416, ( :1/2), −0.951+0.307i)
|
Particular Values
L(1) |
≈ |
0.0145952−0.0927568i |
L(21) |
≈ |
0.0145952−0.0927568i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.41−0.0124i)T |
| 13 | 1+(3.51+0.795i)T |
good | 3 | 1+(−0.185−0.447i)T+(−2.12+2.12i)T2 |
| 5 | 1+(0.172+0.416i)T+(−3.53+3.53i)T2 |
| 7 | 1+2.63T+7T2 |
| 11 | 1+(3.87−1.60i)T+(7.77−7.77i)T2 |
| 17 | 1+3.57T+17T2 |
| 19 | 1+(0.249−0.603i)T+(−13.4−13.4i)T2 |
| 23 | 1+(2.69−2.69i)T−23iT2 |
| 29 | 1+(1.95−0.808i)T+(20.5−20.5i)T2 |
| 31 | 1+(3.43+3.43i)T+31iT2 |
| 37 | 1+(2.19−0.907i)T+(26.1−26.1i)T2 |
| 41 | 1−0.550iT−41T2 |
| 43 | 1+(4.93+2.04i)T+(30.4+30.4i)T2 |
| 47 | 1+(2.63+2.63i)T+47iT2 |
| 53 | 1+(11.0+4.58i)T+(37.4+37.4i)T2 |
| 59 | 1+(0.722+1.74i)T+(−41.7+41.7i)T2 |
| 61 | 1+(−2.34+0.973i)T+(43.1−43.1i)T2 |
| 67 | 1+(−10.2−4.23i)T+(47.3+47.3i)T2 |
| 71 | 1−0.852iT−71T2 |
| 73 | 1−6.22T+73T2 |
| 79 | 1+1.67T+79T2 |
| 83 | 1+(3.20−7.73i)T+(−58.6−58.6i)T2 |
| 89 | 1−3.24iT−89T2 |
| 97 | 1+(−13.6+13.6i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37378084258214575161844734619, −9.879504411165509557723557535463, −9.218664100042432537500691007969, −8.096685403730316685307567256924, −7.16689124799014682962208946087, −6.39876696096767270380128798445, −5.01814173886015846097775511263, −3.48714348112842098169378105048, −2.23588601723039665499962157368, −0.07380022883093821362308396263,
2.12015535887364668814730390502, 3.15222514264820210374902602688, 4.97078178421053723326455733696, 6.35207339830799185622300587889, 7.15661789449653373788506057003, 7.893695008413628642795489632245, 8.930631109901544450764773888446, 9.868196627446215161660033462273, 10.53453925001558907679997214274, 11.29834095592125375872089879701